TY - JOUR AU1 - Glasser, M. AU2 - Zhou, Yajun AB - We show that the following double integral $$\begin{aligned} \int _{0}^\pi \mathrm {d}\, x\int _0^x\mathrm {d}\, y\frac{1}{\sqrt{1-\smash [b]{p}\cos x}\sqrt{1+\smash [b]{q\cos y}}} \end{aligned}$$ ∫ 0 π d x ∫ 0 x d y 1 1 - p cos x 1 + q cos y remains invariant as one trades the parameters p and q for $$p'=\sqrt{1-p^2}$$ p ′ = 1 - p 2 and $$q'=\sqrt{1-q^2}$$ q ′ = 1 - q 2 , respectively. This invariance property is suggested from symmetry considerations in the operating characteristics of a semiconductor Hall effect device. TI - A functional identity involving elliptic integrals JF - The Ramanujan Journal DO - 10.1007/s11139-017-9915-4 DA - 2017-06-26 UR - https://www.deepdyve.com/lp/springer-journals/a-functional-identity-involving-elliptic-integrals-2po3tbjBsW SP - 243 EP - 251 VL - 47 IS - 2 DP - DeepDyve ER -