TY - JOUR AU1 - Fortino, V. AU2 - Torricelli, C. AU3 - Gardi, C. AU4 - Valacchi, G. AU5 - Rossi Paccani, S. AU6 - Maioli, E. AB - Parathyroid hormone-related peptide (PTHrP) receptors, coupled to trimeric G proteins, operate in most target cells through at least three different transduction routes: Gαs-mediated stimulation of adenylylcyclase (AC), Gαq-mediated activation of phospholipase Cβ (PLC) and mitogen-activated protein kinase (MAPK) activation. In this study we investigated the relative role of different pathways in human skin fibroblast prolifera-tion. Using chemical inhibitors and activators of signal transduction, we demonstrated that: (i) AC/cAMP and PLC/1,4,5 inositol triphosphate/diacylglycerol second-messenger systems are simultaneously activated following PTHrP binding to its receptors; (ii) the mitogenic response to PTHrP derives from a balance between two counteracting pathways – an activating route mediated by protein kinase C (PKC) and an inhibitory route mediated by protein kinase A (PKA); (iii) PTHrP mitogenic effects are largely dependent on MAPKs, whose activity can be modulate d by both PKA and PKC. Our results indicate that MAPKs are common targets of both transduction routes and, at the same time, their point of divergence in mediating PTHrP dual and opposite mitogenic effects. TI - ERKs are the point of divergence of PKA and PKC activation by PTHrP in human skin fibroblasts JF - Cellular and Molecular Life Sciences DO - 10.1007/s000180200015 DA - 2002-12-01 UR - https://www.deepdyve.com/lp/springer-journals/erks-are-the-point-of-divergence-of-pka-and-pkc-activation-by-pthrp-in-0lArTSATlU SP - 2165 EP - 2171 VL - 59 IS - 12 DP - DeepDyve ER -