%0 Journal Article %T Machine learning identifies pathophysiologically and prognostically informative phenotypes among patients with mitral regurgitation undergoing transcatheter edge-to-edge repair %A Trenkwalder, Teresa %A Lachmann, Mark %A Stolz, Lukas %A Fortmeier, Vera %A Covarrubias, Héctor Alfonso Alvarez %A Rippen, Elena %A Schürmann, Friederike %A Presch, Antonia %A von Scheidt, Moritz %A Ruff, Celine %A Hesse, Amelie %A Gerçek, Muhammed %A Mayr, N Patrick %A Ott, Ilka %A Schuster, Tibor %A Harmsen, Gerhard %A Yuasa, Shinsuke %A Kufner, Sebastian %A Hoppmann, Petra %A Kupatt, Christian %A Schunkert, Heribert %A Kastrati, Adnan %A Laugwitz, Karl-Ludwig %A Rudolph, Volker %A Joner, Michael %A Hausleiter, Jörg %A Xhepa, Erion %J European Heart Journal - Cardiovascular Imaging %V 24 %N 5 %P 574-587 %@ 2047-2404 %D 2023-02-03 %I Oxford University Press %~ DeepDyve