Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Subseasonal Deterministic Prediction Skill of Low-Level Geopotential Height Affecting Southern Africa

Subseasonal Deterministic Prediction Skill of Low-Level Geopotential Height Affecting Southern... AbstractThe NCEP CFSv2 and ECMWF hindcasts are used to explore the deterministic subseasonal predictability of the 850-hPa circulation of a large domain over the Atlantic and Indian Oceans that is relevant to the weather and climate of the southern African region. For NCEP CFSv2, 12 years of hindcasts, starting on 1 January 1999 and initialized daily for four ensemble members up to 31 December 2010 are verified against ERA-Interim reanalysis data. For ECMWF, 20 years of hindcasts (1995–2014), initialized once a month for all the months of the year are employed in a parallel analysis to investigate the predictability of the 850-hPa circulation. The ensemble mean for 7-day moving averages is used to assess the prediction skill for all the start dates in each month of the year, with a focus on the start dates in each month that are representative of the week-3 and week-4 hindcasts. The correlation between the anomaly patterns over the study domain shows skill over persistence up into the week-3 hindcasts for some months. The spatial distribution of the correlation between the anomaly patterns show skill over persistence to notably reduce over the domain by week 3. A prominent area where prediction skill survives the longest, occur over central South America and the adjacent Atlantic Ocean. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Subseasonal Deterministic Prediction Skill of Low-Level Geopotential Height Affecting Southern Africa

Loading next page...
 
/lp/american-meteorological-society/subseasonal-deterministic-prediction-skill-of-low-level-geopotential-dHQZ36nue0

References (5)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
eISSN
1520-0434
DOI
10.1175/WAF-D-20-0008.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe NCEP CFSv2 and ECMWF hindcasts are used to explore the deterministic subseasonal predictability of the 850-hPa circulation of a large domain over the Atlantic and Indian Oceans that is relevant to the weather and climate of the southern African region. For NCEP CFSv2, 12 years of hindcasts, starting on 1 January 1999 and initialized daily for four ensemble members up to 31 December 2010 are verified against ERA-Interim reanalysis data. For ECMWF, 20 years of hindcasts (1995–2014), initialized once a month for all the months of the year are employed in a parallel analysis to investigate the predictability of the 850-hPa circulation. The ensemble mean for 7-day moving averages is used to assess the prediction skill for all the start dates in each month of the year, with a focus on the start dates in each month that are representative of the week-3 and week-4 hindcasts. The correlation between the anomaly patterns over the study domain shows skill over persistence up into the week-3 hindcasts for some months. The spatial distribution of the correlation between the anomaly patterns show skill over persistence to notably reduce over the domain by week 3. A prominent area where prediction skill survives the longest, occur over central South America and the adjacent Atlantic Ocean.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Feb 1, 2021

There are no references for this article.