Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Understanding the Impacts of Land Surface and PBL Observations on the Terrestrial and Atmospheric Legs of Land–Atmosphere Coupling

Understanding the Impacts of Land Surface and PBL Observations on the Terrestrial and Atmospheric... AbstractAccurately representing land–atmosphere (LA) interactions and coupling in NWP systems remains a challenge. New observations, incorporated into models via assimilation or calibration, hold the promise of improved forecast skill, but erroneous model coupling can hinder the benefits of such activities. To better understand model representation of coupled interactions and feedbacks, this study demonstrates a novel framework for coupled calibration of the single column model (SCM) capability of the NASA Unified Weather Research and Forecasting (NU-WRF) system coupled to NASA’s Land Information System (LIS). The local land–atmosphere coupling (LoCo) process chain paradigm is used to assess the processes and connections revealed by calibration experiments. Two summer case studies in the U.S. Southern Great Plains are simulated in which LSM parameters are calibrated to diurnal observations of LoCo process chain components including 2-m temperature, 2-m humidity, surface fluxes (Bowen ratio), and PBL height. Results show a wide range of soil moisture and hydraulic parameter solutions depending on which LA variable (i.e., observation) is used for calibration, highlighting that improvement in either soil hydraulic parameters or initial soil moisture when not in tandem with the other can provide undesirable results. Overall, this work demonstrates that a process chain calibration approach can be used to assess LA connections, feedbacks, strengths, and deficiencies in coupled models, as well as quantify the potential impact of new sources of observations of land–PBL variables on coupled prediction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Understanding the Impacts of Land Surface and PBL Observations on the Terrestrial and Atmospheric Legs of Land–Atmosphere Coupling

Loading next page...
 
/lp/american-meteorological-society/understanding-the-impacts-of-land-surface-and-pbl-observations-on-the-KHIIc0MzA8

References (63)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
DOI
10.1175/JHM-D-20-0263.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAccurately representing land–atmosphere (LA) interactions and coupling in NWP systems remains a challenge. New observations, incorporated into models via assimilation or calibration, hold the promise of improved forecast skill, but erroneous model coupling can hinder the benefits of such activities. To better understand model representation of coupled interactions and feedbacks, this study demonstrates a novel framework for coupled calibration of the single column model (SCM) capability of the NASA Unified Weather Research and Forecasting (NU-WRF) system coupled to NASA’s Land Information System (LIS). The local land–atmosphere coupling (LoCo) process chain paradigm is used to assess the processes and connections revealed by calibration experiments. Two summer case studies in the U.S. Southern Great Plains are simulated in which LSM parameters are calibrated to diurnal observations of LoCo process chain components including 2-m temperature, 2-m humidity, surface fluxes (Bowen ratio), and PBL height. Results show a wide range of soil moisture and hydraulic parameter solutions depending on which LA variable (i.e., observation) is used for calibration, highlighting that improvement in either soil hydraulic parameters or initial soil moisture when not in tandem with the other can provide undesirable results. Overall, this work demonstrates that a process chain calibration approach can be used to assess LA connections, feedbacks, strengths, and deficiencies in coupled models, as well as quantify the potential impact of new sources of observations of land–PBL variables on coupled prediction.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Sep 24, 2021

There are no references for this article.