Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Biophysical Impacts of Deforestation on Precipitation: Results from the CMIP6 Model Intercomparison

The Biophysical Impacts of Deforestation on Precipitation: Results from the CMIP6 Model... AbstractDeforestation can impact precipitation through biophysical processes and such effects are commonly examined by models. However, previous studies mostly conduct deforestation experiments with a single model and the simulated precipitation responses to deforestation diverge across studies. In this study, 11 Earth system models are used to robustly examine the biophysical impacts of deforestation on precipitation, precipitation extremes, and the seasonal pattern of the rainy season through a comparison of a control simulation and an idealized global deforestation simulation with clearings of 20 million km2 of forests. The multimodel mean suggests decreased precipitation, reduced frequency and intensity of heavy precipitation, and shortened duration of rainy seasons over deforested areas. The deforestation effects can even propagate to some regions that are remote from deforested areas (e.g., the tropical and subtropical oceans and the Arctic Ocean). Nevertheless, the 11 models do not fully agree on the precipitation changes almost everywhere. In general, the models exhibit higher consistency over the deforested areas and a few regions outside the deforested areas (e.g., the subtropical oceans) but lower consistency over other regions. Such intermodel spread mostly results from divergent responses of evapotranspiration and atmospheric moisture convergence to deforestation across the models. One of the models that has multiple simulation members also reveals considerable spread of the precipitation responses to deforestation across the members due to internal model variability. This study highlights the necessity of robustly examining precipitation responses to deforestation based on multiple models and each model with multiple simulation members. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

The Biophysical Impacts of Deforestation on Precipitation: Results from the CMIP6 Model Intercomparison

Loading next page...
 
/lp/american-meteorological-society/the-biophysical-impacts-of-deforestation-on-precipitation-results-from-Bweq7PDZ0F

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
DOI
10.1175/jcli-d-21-0689.1
Publisher site
See Article on Publisher Site

Abstract

AbstractDeforestation can impact precipitation through biophysical processes and such effects are commonly examined by models. However, previous studies mostly conduct deforestation experiments with a single model and the simulated precipitation responses to deforestation diverge across studies. In this study, 11 Earth system models are used to robustly examine the biophysical impacts of deforestation on precipitation, precipitation extremes, and the seasonal pattern of the rainy season through a comparison of a control simulation and an idealized global deforestation simulation with clearings of 20 million km2 of forests. The multimodel mean suggests decreased precipitation, reduced frequency and intensity of heavy precipitation, and shortened duration of rainy seasons over deforested areas. The deforestation effects can even propagate to some regions that are remote from deforested areas (e.g., the tropical and subtropical oceans and the Arctic Ocean). Nevertheless, the 11 models do not fully agree on the precipitation changes almost everywhere. In general, the models exhibit higher consistency over the deforested areas and a few regions outside the deforested areas (e.g., the subtropical oceans) but lower consistency over other regions. Such intermodel spread mostly results from divergent responses of evapotranspiration and atmospheric moisture convergence to deforestation across the models. One of the models that has multiple simulation members also reveals considerable spread of the precipitation responses to deforestation across the members due to internal model variability. This study highlights the necessity of robustly examining precipitation responses to deforestation based on multiple models and each model with multiple simulation members.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jun 1, 2022

References