Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Influence of Atmospheric Circulation on Glacier Mass Balance in Western Tibet: An Analysis Based on Observations and Modeling

Influence of Atmospheric Circulation on Glacier Mass Balance in Western Tibet: An Analysis Based... AbstractGlacier changes on the Tibetan Plateau (TP) have been spatially heterogeneous in recent decades. The understanding of glacier mass changes in western Tibet, a transitional area between the monsoon-dominated region and the westerlies-dominated region, is still incomplete. For this study, we used an energy–mass balance model to reconstruct annual mass balances from October 1967 to September 2019 to explore the effects of local climate and large-scale atmospheric circulation on glacier mass changes in western Tibet. The results showed that Xiao Anglong Glacier is close to a balanced condition, with an average value of −53 ± 185 mm water equivalent (w.e.) yr−1 for 1968–2019. The interannual mass balance variability during 1968–2019 was primary driven by ablation-season precipitation, which determined changes in the snow accumulation and strongly influenced melt processes. The interannual mass balance variability during 1968–2019 was less affected by ablation-season air temperature, which only weakly affected snowfall and melt energy. Further analysis suggests that the southward (or northward) shift of the westerlies caused low (or high) ablation-season precipitation, and therefore low (or high) annual mass balance for glaciers in western Tibet. In addition, the average mass balance for Xiao Anglong Glacier was 83 ± 185, −210 ± 185, and −10 ± 185 mm w.e. yr−1 for 1968–90, 1991–2012, and 2013–19, respectively. These mass changes were associated with the variations in precipitation and air temperature during the ablation season on interdecadal time scales. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Influence of Atmospheric Circulation on Glacier Mass Balance in Western Tibet: An Analysis Based on Observations and Modeling

Loading next page...
 
/lp/american-meteorological-society/influence-of-atmospheric-circulation-on-glacier-mass-balance-in-cTi8ayl0eG

References (64)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
DOI
10.1175/JCLI-D-20-0988.1
Publisher site
See Article on Publisher Site

Abstract

AbstractGlacier changes on the Tibetan Plateau (TP) have been spatially heterogeneous in recent decades. The understanding of glacier mass changes in western Tibet, a transitional area between the monsoon-dominated region and the westerlies-dominated region, is still incomplete. For this study, we used an energy–mass balance model to reconstruct annual mass balances from October 1967 to September 2019 to explore the effects of local climate and large-scale atmospheric circulation on glacier mass changes in western Tibet. The results showed that Xiao Anglong Glacier is close to a balanced condition, with an average value of −53 ± 185 mm water equivalent (w.e.) yr−1 for 1968–2019. The interannual mass balance variability during 1968–2019 was primary driven by ablation-season precipitation, which determined changes in the snow accumulation and strongly influenced melt processes. The interannual mass balance variability during 1968–2019 was less affected by ablation-season air temperature, which only weakly affected snowfall and melt energy. Further analysis suggests that the southward (or northward) shift of the westerlies caused low (or high) ablation-season precipitation, and therefore low (or high) annual mass balance for glaciers in western Tibet. In addition, the average mass balance for Xiao Anglong Glacier was 83 ± 185, −210 ± 185, and −10 ± 185 mm w.e. yr−1 for 1968–90, 1991–2012, and 2013–19, respectively. These mass changes were associated with the variations in precipitation and air temperature during the ablation season on interdecadal time scales.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 20, 2021

There are no references for this article.