Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Tropical Cyclone Size Is Strongly Limited by the Rhines Scale: Experiments with a Barotropic Model

Tropical Cyclone Size Is Strongly Limited by the Rhines Scale: Experiments with a Barotropic Model AbstractRecent work found evidence using aquaplanet experiments that tropical cyclone (TC) size on Earth is limited by the Rhines scale, which depends on the planetary vorticity gradient β. This study aims to examine how the Rhines scale limits the size of an individual TC. The traditional Rhines scale is first reexpressed as a Rhines speed to characterize how the effect of β varies with radius in a vortex whose wind profile is known. The framework is used to define the vortex Rhines scale, which is the transition radius that divides the vortex into a vortex-dominant region at smaller radii, where the axisymmetric circulation is steady, and a wave-dominant region at larger radii, where the circulation stimulates planetary Rossby waves and dissipates. Experiments are performed using a simple barotropic model on a β plane initialized with a TC-like axisymmetric vortex defined using a recently developed theoretical TC wind profile model. The gradient β and initial vortex size are each systematically varied to investigate the detailed responses of the TC-like vortex to β. Results show that the vortex shrinks toward an equilibrium size that closely follows the vortex Rhines scale. A larger initial vortex relative to its vortex Rhines scale will shrink faster. The shrinking time scale is well described by the vortex Rhines time scale, which is defined as the overturning time scale of the circulation at the vortex Rhines scale and is shown to be directly related to the Rossby wave group velocity. The relationship between our idealized results and the real Earth is discussed. Results may generalize to other eddy circulations, such as the extratropical cyclone.Significance StatementTropical cyclones vary in size significantly on Earth, but how large a tropical cyclone could potentially be is still not understood. The variation of the Coriolis parameter with latitude is known to limit the size of turbulent circulations, but its effect on tropical cyclones has not been studied. This study derives a new parameter related to this concept called the “vortex Rhines scale” and shows in a simple model how and why storms will tend to shrink toward this size. These results help explain why tropical cyclone size tends to increase slowly with latitude on Earth and can help us understand what sets the size of tropical cyclones on Earth in general. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Tropical Cyclone Size Is Strongly Limited by the Rhines Scale: Experiments with a Barotropic Model

Journal of the Atmospheric Sciences , Volume 79 (8): 16 – Aug 11, 2022

Loading next page...
 
/lp/american-meteorological-society/tropical-cyclone-size-is-strongly-limited-by-the-rhines-scale-H0qTQTBqZQ

References (60)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
DOI
10.1175/jas-d-21-0224.1
Publisher site
See Article on Publisher Site

Abstract

AbstractRecent work found evidence using aquaplanet experiments that tropical cyclone (TC) size on Earth is limited by the Rhines scale, which depends on the planetary vorticity gradient β. This study aims to examine how the Rhines scale limits the size of an individual TC. The traditional Rhines scale is first reexpressed as a Rhines speed to characterize how the effect of β varies with radius in a vortex whose wind profile is known. The framework is used to define the vortex Rhines scale, which is the transition radius that divides the vortex into a vortex-dominant region at smaller radii, where the axisymmetric circulation is steady, and a wave-dominant region at larger radii, where the circulation stimulates planetary Rossby waves and dissipates. Experiments are performed using a simple barotropic model on a β plane initialized with a TC-like axisymmetric vortex defined using a recently developed theoretical TC wind profile model. The gradient β and initial vortex size are each systematically varied to investigate the detailed responses of the TC-like vortex to β. Results show that the vortex shrinks toward an equilibrium size that closely follows the vortex Rhines scale. A larger initial vortex relative to its vortex Rhines scale will shrink faster. The shrinking time scale is well described by the vortex Rhines time scale, which is defined as the overturning time scale of the circulation at the vortex Rhines scale and is shown to be directly related to the Rossby wave group velocity. The relationship between our idealized results and the real Earth is discussed. Results may generalize to other eddy circulations, such as the extratropical cyclone.Significance StatementTropical cyclones vary in size significantly on Earth, but how large a tropical cyclone could potentially be is still not understood. The variation of the Coriolis parameter with latitude is known to limit the size of turbulent circulations, but its effect on tropical cyclones has not been studied. This study derives a new parameter related to this concept called the “vortex Rhines scale” and shows in a simple model how and why storms will tend to shrink toward this size. These results help explain why tropical cyclone size tends to increase slowly with latitude on Earth and can help us understand what sets the size of tropical cyclones on Earth in general.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Aug 11, 2022

There are no references for this article.