Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Comparison of 700-hPa NCEP-R1 and AMIP-R2 Wind Patterns over the Continental United States Using Cluster Analysis

Comparison of 700-hPa NCEP-R1 and AMIP-R2 Wind Patterns over the Continental United States Using... Clustering techniques are adapted to facilitate the comparison of gridded 700-hPa wind flow patterns spanning the continental United States. A recent decade (1985–94) of wind component data has been extracted from two widely used reanalysis datasets: NCEP-R1 and the NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project, phase two (AMIP-R2). Metrics and measures are identified that facilitate the identification and comparison of large-scale wind flow. Comparison of the cluster results reveals dominant wind patterns common to both datasets as well as three types of reanalysis model differences: 1) relatively minor numerical differences; 2) differences produced by model corrections or parameterization changes, such as snow mask, snow depth, and moisture flux; and 3) systematic differences, such as orography, overocean radiation fluxes, and overocean data assimilation. A second analysis examines the frequency of 700-hPa wind patterns associated with key ozone-season (May–September) synoptic settings. Association of 1990–94 daily maximum 1-h ozone levels with these patterns across the United States follows documented meteorological dependencies. Above-average ozone levels in the Midwest and mid-Atlantic are associated with transitional anticyclone and easterly flow synoptic patterns (39.2% of ozone-season days) while above-average ozone levels across the southern United States are associated with the westward extension of the Bermuda high circulation (14.8% of ozone-season days). Below-average ozone levels throughout most of the eastern United States are associated with frontal passages and migratory anticyclones (29.6% of ozone-season days). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Comparison of 700-hPa NCEP-R1 and AMIP-R2 Wind Patterns over the Continental United States Using Cluster Analysis

Loading next page...
 
/lp/american-meteorological-society/comparison-of-700-hpa-ncep-r1-and-amip-r2-wind-patterns-over-the-3Irjp9CMXB

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Meteorological Society
Copyright
Copyright © 2006 American Meteorological Society
ISSN
1558-8432
DOI
10.1175/2007JAMC1527.1
Publisher site
See Article on Publisher Site

Abstract

Clustering techniques are adapted to facilitate the comparison of gridded 700-hPa wind flow patterns spanning the continental United States. A recent decade (1985–94) of wind component data has been extracted from two widely used reanalysis datasets: NCEP-R1 and the NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project, phase two (AMIP-R2). Metrics and measures are identified that facilitate the identification and comparison of large-scale wind flow. Comparison of the cluster results reveals dominant wind patterns common to both datasets as well as three types of reanalysis model differences: 1) relatively minor numerical differences; 2) differences produced by model corrections or parameterization changes, such as snow mask, snow depth, and moisture flux; and 3) systematic differences, such as orography, overocean radiation fluxes, and overocean data assimilation. A second analysis examines the frequency of 700-hPa wind patterns associated with key ozone-season (May–September) synoptic settings. Association of 1990–94 daily maximum 1-h ozone levels with these patterns across the United States follows documented meteorological dependencies. Above-average ozone levels in the Midwest and mid-Atlantic are associated with transitional anticyclone and easterly flow synoptic patterns (39.2% of ozone-season days) while above-average ozone levels across the southern United States are associated with the westward extension of the Bermuda high circulation (14.8% of ozone-season days). Below-average ozone levels throughout most of the eastern United States are associated with frontal passages and migratory anticyclones (29.6% of ozone-season days).

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Jul 5, 2006

References