Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Application of Wavelet Transform to Meteosat-Derived Cold Cloud Index Data over South America

Application of Wavelet Transform to Meteosat-Derived Cold Cloud Index Data over South America Cold cloud index (CCI) data derived from Meteosat infrared imagery are used to detect periodicities in convective activity in South America. The generally used Fourier transform (FT) cannot provide time-localized information but gives information on the average periodicity of oscillations over the entire time domain. As many events in the atmosphere are intermittent, wavelet transform (WT) is used to identify periodic events in CCI data. First, the Morlet WT is applied to different combinations of time series data of known periodicities to demonstrate the advantage of WT over FT. Later it is applied to CCI data over four 9° square areas between the latitudes 4.5°N and 31.5°S, and longitudes 54°–45°W. Near the equator periodic convective activities are observed to be more prominent in the boreal summer than in the austral summer. Between the latitudes 4.5° and 22.5°S, 1-, 2–3-, approximately 5-, and 8–10-day oscillations are seen in the austral summer and seldom is any convective activity seen in the winter. In January semidiurnal variation of cloudiness is also observed for a few days. Farther south in the extratropics, approximately 10- and approximately 20-day periodic events, which refer to the baroclinic waves, are seen more prominently in the austral autumn and winter, and 1- and approximately 5-day oscillations are seen in the summer, perhaps due to convective cloudiness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Application of Wavelet Transform to Meteosat-Derived Cold Cloud Index Data over South America

Loading next page...
 
/lp/american-meteorological-society/application-of-wavelet-transform-to-meteosat-derived-cold-cloud-index-4KgCnnZ04M

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Meteorological Society
Copyright
Copyright © 1997 American Meteorological Society
ISSN
1520-0493
DOI
10.1175/1520-0493(1998)126<2466:AOWTTM>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Cold cloud index (CCI) data derived from Meteosat infrared imagery are used to detect periodicities in convective activity in South America. The generally used Fourier transform (FT) cannot provide time-localized information but gives information on the average periodicity of oscillations over the entire time domain. As many events in the atmosphere are intermittent, wavelet transform (WT) is used to identify periodic events in CCI data. First, the Morlet WT is applied to different combinations of time series data of known periodicities to demonstrate the advantage of WT over FT. Later it is applied to CCI data over four 9° square areas between the latitudes 4.5°N and 31.5°S, and longitudes 54°–45°W. Near the equator periodic convective activities are observed to be more prominent in the boreal summer than in the austral summer. Between the latitudes 4.5° and 22.5°S, 1-, 2–3-, approximately 5-, and 8–10-day oscillations are seen in the austral summer and seldom is any convective activity seen in the winter. In January semidiurnal variation of cloudiness is also observed for a few days. Farther south in the extratropics, approximately 10- and approximately 20-day periodic events, which refer to the baroclinic waves, are seen more prominently in the austral autumn and winter, and 1- and approximately 5-day oscillations are seen in the summer, perhaps due to convective cloudiness.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Mar 31, 1997

There are no references for this article.