Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI

Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS,... The accuracy of the Global Positioning System (GPS) as an instrument for measuring the integrated water vapor content of the atmosphere has been evaluated by comparison with concurrent observations made over a 14-day period by radiosonde, microwave water vapor radiometer (WVR), and Very Long Baseline Interferometry (VLBI). The Vaisala RS-80 A-HUMICAP radiosondes required a correction to the relative humidity readings (provided by Vaisala) to account for packaging contamination; the WVR data required a correction in order to be consistent with the wet refractivity formulation of the VLBI, GPS, and radiosondes. The best agreement of zenith wet delay (ZWD) among the collocated WVR, radiosondes, VLBI, and GPS was for minimum elevations of the GPS measurements below 10°°. After corrections were applied to the WVR and radiosonde measurements, WVR, GPS, and VLBI (with 5°° minimum elevation angle cutoff) agreed within ∼∼6 mm of ZWD 1 mm of precipitable water vapor (PWV) when the differences were averaged, while the radiosondes averaged ∼∼6 mm of ZWD lower than the WVR. After the removal of biases between the techniques, the VLBI and GPS scales differ by less than 3%%, while the WVR scale was ∼∼5%% higher and the radiosonde scale was ∼∼5%% lower. Estimates of zenith wet delay by GPS receivers equipped with Dorne––Margolin choke ring antennas were found to have a strong dependence on the minimum elevation angle of the data. Elevation angle dependent phase errors for the GPS antenna//mount combination can produce ZWD errors of greater than 30 mm over a few hour interval for typical GPS satellite coverage. The VLBI measurements of ZWD are independent of minimum elevation angle and, based on known error sources, appear to be the most accurate of the four techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI

Loading next page...
 
/lp/american-meteorological-society/comparison-of-measurements-of-atmospheric-wet-delay-by-radiosonde-IQRxdobBrJ

References (59)

Publisher
American Meteorological Society
Copyright
Copyright © 2000 American Meteorological Society
ISSN
1520-0426
DOI
10.1175/1520-0426(2001)018<0830:COMOAW>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

The accuracy of the Global Positioning System (GPS) as an instrument for measuring the integrated water vapor content of the atmosphere has been evaluated by comparison with concurrent observations made over a 14-day period by radiosonde, microwave water vapor radiometer (WVR), and Very Long Baseline Interferometry (VLBI). The Vaisala RS-80 A-HUMICAP radiosondes required a correction to the relative humidity readings (provided by Vaisala) to account for packaging contamination; the WVR data required a correction in order to be consistent with the wet refractivity formulation of the VLBI, GPS, and radiosondes. The best agreement of zenith wet delay (ZWD) among the collocated WVR, radiosondes, VLBI, and GPS was for minimum elevations of the GPS measurements below 10°°. After corrections were applied to the WVR and radiosonde measurements, WVR, GPS, and VLBI (with 5°° minimum elevation angle cutoff) agreed within ∼∼6 mm of ZWD 1 mm of precipitable water vapor (PWV) when the differences were averaged, while the radiosondes averaged ∼∼6 mm of ZWD lower than the WVR. After the removal of biases between the techniques, the VLBI and GPS scales differ by less than 3%%, while the WVR scale was ∼∼5%% higher and the radiosonde scale was ∼∼5%% lower. Estimates of zenith wet delay by GPS receivers equipped with Dorne––Margolin choke ring antennas were found to have a strong dependence on the minimum elevation angle of the data. Elevation angle dependent phase errors for the GPS antenna//mount combination can produce ZWD errors of greater than 30 mm over a few hour interval for typical GPS satellite coverage. The VLBI measurements of ZWD are independent of minimum elevation angle and, based on known error sources, appear to be the most accurate of the four techniques.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Mar 9, 2000

There are no references for this article.