Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Brain size in Hylarana guentheri seems unaffected by variation in temperature and growth season

Brain size in Hylarana guentheri seems unaffected by variation in temperature and growth season Brain size varies dramatically between vertebrate species. Two prominent adaptive hypotheses – the Cognitive Buffer Hypothesis (CBH) and the Expensive Brain Hypothesis (EBH) – have been proposed to explain brain size evolution. The CBH assumes that brain size should increase with seasonality, as the cognitive benefits of a larger brain should help overcoming periods of food scarcity via, for example, increased behavioral flexibility. Alternatively, the EBH states that brain size should decrease with seasonality because a smaller brain confers energetic benefits in periods of food scarcity. Here, to test the two adaptive hypotheses by studying the effects of variation in temperature and growth season on variations in overall brain size and the size of specific brain regions (viz. olfactory nerves, olfactory bulbs, telencephalon, optic tectum and cerebellum) among Hylarana guentheri populations. Inconsistent with the predictions of both the EBH and the CBH, variation in temperature and growth season did not exhibit correlations with overall brain size and the size of brain regions across populations. Hence, our data do not provide support for either the EBH or the CBH to explain brain size variation in H. guentheri. Furthermore, brain size variation did not differ between males and females in this species. Our findings suggest that both the variation in temperature and growth season did not shape the variation in brain size in H. guentheri. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Animal Biology Brill

Brain size in Hylarana guentheri seems unaffected by variation in temperature and growth season

Loading next page...
 
/lp/brill/brain-size-in-hylarana-guentheri-seems-unaffected-by-variation-in-9C5YZnkW5o

References (81)

Publisher
Brill
Copyright
Copyright © Koninklijke Brill NV, Leiden, The Netherlands
ISSN
1570-7555
eISSN
1570-7563
DOI
10.1163/15707563-00002533
Publisher site
See Article on Publisher Site

Abstract

Brain size varies dramatically between vertebrate species. Two prominent adaptive hypotheses – the Cognitive Buffer Hypothesis (CBH) and the Expensive Brain Hypothesis (EBH) – have been proposed to explain brain size evolution. The CBH assumes that brain size should increase with seasonality, as the cognitive benefits of a larger brain should help overcoming periods of food scarcity via, for example, increased behavioral flexibility. Alternatively, the EBH states that brain size should decrease with seasonality because a smaller brain confers energetic benefits in periods of food scarcity. Here, to test the two adaptive hypotheses by studying the effects of variation in temperature and growth season on variations in overall brain size and the size of specific brain regions (viz. olfactory nerves, olfactory bulbs, telencephalon, optic tectum and cerebellum) among Hylarana guentheri populations. Inconsistent with the predictions of both the EBH and the CBH, variation in temperature and growth season did not exhibit correlations with overall brain size and the size of brain regions across populations. Hence, our data do not provide support for either the EBH or the CBH to explain brain size variation in H. guentheri. Furthermore, brain size variation did not differ between males and females in this species. Our findings suggest that both the variation in temperature and growth season did not shape the variation in brain size in H. guentheri.

Journal

Animal BiologyBrill

Published: Aug 21, 2017

There are no references for this article.