Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Use of the high‐affinity phosphate transporter gene, pstS, as an indicator for phosphorus stress in the marine diazotroph Crocosphaera watsonii (Chroococcales, Cyanobacteria)

Use of the high‐affinity phosphate transporter gene, pstS, as an indicator for phosphorus stress... The marine diazotroph Crocosphaera watsonii provides fixed carbon (C) and nitrogen (N) to open‐ocean regimes, where nutrient deficiency controls productivity. The growth of Crocosphaera can be limited by low phosphorus (P) concentrations in these oligotrophic environments. Biomarkers such as the high‐affinity ABC transporter phosphate‐binding gene, pstS, are commonly used to monitor when such organisms are under P stress; however, transcriptional regulation of these markers is often complex and not well‐understood. In this study, we interrogated changes in pstS transcript levels in C. watsonii cells under P starvation, and in response to added dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), and changing light levels. We observed elevated relative pstS transcript levels in C. watsonii WH8501 at DIP concentrations below 60 and above 20 nmol · L−1. Transcript levels were suppressed by both inorganic and bioavailable organic phosphorus; however, the P stress response was more sensitive to DIP than DOP sources. Increasing light intensity resulted in increased relative pstS transcript abundances independently of low external P, and seemed to exacerbate the physiological effects of P stress. The variable response to different P compounds and rapid and transient influence of high light on pstS transcript abundances suggests that pstS is an indicator of internal P status in Crocosphaera. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Phycology Wiley

Use of the high‐affinity phosphate transporter gene, pstS, as an indicator for phosphorus stress in the marine diazotroph Crocosphaera watsonii (Chroococcales, Cyanobacteria)

Loading next page...
 
/lp/wiley/use-of-the-high-affinity-phosphate-transporter-gene-psts-as-an-xgmln1XNrT

References (69)

Publisher
Wiley
Copyright
© 2019 Phycological Society of America
ISSN
0022-3646
eISSN
1529-8817
DOI
10.1111/jpy.12863
Publisher site
See Article on Publisher Site

Abstract

The marine diazotroph Crocosphaera watsonii provides fixed carbon (C) and nitrogen (N) to open‐ocean regimes, where nutrient deficiency controls productivity. The growth of Crocosphaera can be limited by low phosphorus (P) concentrations in these oligotrophic environments. Biomarkers such as the high‐affinity ABC transporter phosphate‐binding gene, pstS, are commonly used to monitor when such organisms are under P stress; however, transcriptional regulation of these markers is often complex and not well‐understood. In this study, we interrogated changes in pstS transcript levels in C. watsonii cells under P starvation, and in response to added dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), and changing light levels. We observed elevated relative pstS transcript levels in C. watsonii WH8501 at DIP concentrations below 60 and above 20 nmol · L−1. Transcript levels were suppressed by both inorganic and bioavailable organic phosphorus; however, the P stress response was more sensitive to DIP than DOP sources. Increasing light intensity resulted in increased relative pstS transcript abundances independently of low external P, and seemed to exacerbate the physiological effects of P stress. The variable response to different P compounds and rapid and transient influence of high light on pstS transcript abundances suggests that pstS is an indicator of internal P status in Crocosphaera.

Journal

Journal of PhycologyWiley

Published: Aug 1, 2019

Keywords: ; ; ;

There are no references for this article.