Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Robot compliant catching by Maxwell model based Cartesian admittance control

Robot compliant catching by Maxwell model based Cartesian admittance control Admittance control is a typical complaint control methodology. Traditionally, admittance control systems are based on a dynamical relationship described by Voigt model. By contrast, after changing connection of spring and damper, Maxwell model produces different dynamics and has shown better impact absorption performance. This paper aims to design a novel compliant control method based on Maxwell model and implement it in a robot catching scenario.Design/methodology/approachTo achieve this goal, this paper proposed a Maxwell model based admittance control scheme. Considering several motion stages involved in one catching attempt, the following approaches are adopted. First, Kalman filter is used to process the position data stream acquired from motion capture system and predict the subsequent object flying trajectory. Then, a linear segments with parabolic blends reaching motion is generated to achieve time-optimal movement under kinematic and joint inherent constraints. After robot reached the desired catching point, the proposed Maxwell model based admittance controller performs such as a cushion to moderate the impact between robot end-effector and flying object.FindingsThis paper has experimentally demonstrated the feasibility and effectiveness of the proposed method. Compared with typical Voigt model based compliant catching, less object bounding away from end-effector happens and the success rate of catching has been improved.Originality/valueThe authors proposed a novel Maxwell model based admittance control method and demonstrated its effectiveness in a robot catching scenario. The author’s approach may inspire other related researchers and has great potential of practical usage in a widespread of robot applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Assembly Automation Emerald Publishing

Robot compliant catching by Maxwell model based Cartesian admittance control

Assembly Automation , Volume 41 (2): 11 – Jul 27, 2021

Loading next page...
 
/lp/emerald-publishing/robot-compliant-catching-by-maxwell-model-based-cartesian-admittance-YlMCWZoXeY

References (40)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0144-5154
DOI
10.1108/aa-04-2019-0062
Publisher site
See Article on Publisher Site

Abstract

Admittance control is a typical complaint control methodology. Traditionally, admittance control systems are based on a dynamical relationship described by Voigt model. By contrast, after changing connection of spring and damper, Maxwell model produces different dynamics and has shown better impact absorption performance. This paper aims to design a novel compliant control method based on Maxwell model and implement it in a robot catching scenario.Design/methodology/approachTo achieve this goal, this paper proposed a Maxwell model based admittance control scheme. Considering several motion stages involved in one catching attempt, the following approaches are adopted. First, Kalman filter is used to process the position data stream acquired from motion capture system and predict the subsequent object flying trajectory. Then, a linear segments with parabolic blends reaching motion is generated to achieve time-optimal movement under kinematic and joint inherent constraints. After robot reached the desired catching point, the proposed Maxwell model based admittance controller performs such as a cushion to moderate the impact between robot end-effector and flying object.FindingsThis paper has experimentally demonstrated the feasibility and effectiveness of the proposed method. Compared with typical Voigt model based compliant catching, less object bounding away from end-effector happens and the success rate of catching has been improved.Originality/valueThe authors proposed a novel Maxwell model based admittance control method and demonstrated its effectiveness in a robot catching scenario. The author’s approach may inspire other related researchers and has great potential of practical usage in a widespread of robot applications.

Journal

Assembly AutomationEmerald Publishing

Published: Jul 27, 2021

Keywords: Cartesian admittance control; Maxwell model; Robot compliant catching

There are no references for this article.