Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Model reduction of nonlinear systems

Model reduction of nonlinear systems This paper presents the application in circuit simulation of a method for model reduction of nonlinear systems that has recently been developed for chemical systems. The technique is an extension of the well‐known balanced truncation method that has been applied extensively in the reduction of linear systems. The technique involves the formation of controllability and observability gramians either by simulated results or by measurement data. The empirical gramians are subsequently employed to determine a subspace of the full state‐space that contains the most significant dynamics of the system. A Galerkin projection is used to project the system onto the subspace to form a lower‐dimensional nonlinear model. The method is applied to a nonlinear resistor network which is a standard example for exemplifying the effectiveness of a nonlinear reduction strategy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/model-reduction-of-nonlinear-systems-U1Yll5dHfG

References (23)

Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
0332-1649
DOI
10.1108/03321640410510730
Publisher site
See Article on Publisher Site

Abstract

This paper presents the application in circuit simulation of a method for model reduction of nonlinear systems that has recently been developed for chemical systems. The technique is an extension of the well‐known balanced truncation method that has been applied extensively in the reduction of linear systems. The technique involves the formation of controllability and observability gramians either by simulated results or by measurement data. The empirical gramians are subsequently employed to determine a subspace of the full state‐space that contains the most significant dynamics of the system. A Galerkin projection is used to project the system onto the subspace to form a lower‐dimensional nonlinear model. The method is applied to a nonlinear resistor network which is a standard example for exemplifying the effectiveness of a nonlinear reduction strategy.

Journal

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Jun 1, 2004

Keywords: Circuits; Simulation

There are no references for this article.