Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Gene Circuit Compartment on Nanointerface Facilitatating Cascade Gene Expression.

Gene Circuit Compartment on Nanointerface Facilitatating Cascade Gene Expression. Cellular genes that are functionally related to each other are usually confined in specialized subcellular compartments for efficient biochemical reactions. Construction of spatially controlled biosynthetic systems will facilitate the study of biological design principles. Herein, we fabricated a gene circuit compartment by coanchoring two function-related genes on surface of gold nanoparticles and investigated the compartment effect on cascade gene expression in a cell-free system. The gene circuit consisted of a T7 RNA polymerase (T7 RNAP) expression cassette as regulatory gene and a fluorescent protein expression cassette as regulated reporter gene. Both the expression cassettes were attached on a Y-shaped DNA nanostructure whose other two branches were mercapto-modified in order to steadily anchor the gene expression cassettes on the surface of gold nanoparticles. Experimental results demonstrated that both the yield and initial expression rate of the fluorescent reporter protein in the gene circuit compartment system were enhanced compared with those in free gene circuit system. Mechanism investigation revealed that the gene circuit compartment on nanoparticle made the regulatory gene and regulated reporter gene spatially proximal at nanoscale, thus effectively improving the transfer efficiency of the regulatory proteins (T7 RNAP) from regulatory genes to the regulated reporter genes in the compartments, and consequently, the biochemical reaction efficiency was significantly increased. This work not only provided a simplified model for rational molecular programming of genes circuit compartments on nanointerface but also presented implications for the cellular structure-function relationship. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Chemical Society Pubmed

Gene Circuit Compartment on Nanointerface Facilitatating Cascade Gene Expression.

Journal of the American Chemical Society , Volume 141 (48): 7 – Oct 6, 2020

Gene Circuit Compartment on Nanointerface Facilitatating Cascade Gene Expression.


Abstract

Cellular genes that are functionally related to each other are usually confined in specialized subcellular compartments for efficient biochemical reactions. Construction of spatially controlled biosynthetic systems will facilitate the study of biological design principles. Herein, we fabricated a gene circuit compartment by coanchoring two function-related genes on surface of gold nanoparticles and investigated the compartment effect on cascade gene expression in a cell-free system. The gene circuit consisted of a T7 RNA polymerase (T7 RNAP) expression cassette as regulatory gene and a fluorescent protein expression cassette as regulated reporter gene. Both the expression cassettes were attached on a Y-shaped DNA nanostructure whose other two branches were mercapto-modified in order to steadily anchor the gene expression cassettes on the surface of gold nanoparticles. Experimental results demonstrated that both the yield and initial expression rate of the fluorescent reporter protein in the gene circuit compartment system were enhanced compared with those in free gene circuit system. Mechanism investigation revealed that the gene circuit compartment on nanoparticle made the regulatory gene and regulated reporter gene spatially proximal at nanoscale, thus effectively improving the transfer efficiency of the regulatory proteins (T7 RNAP) from regulatory genes to the regulated reporter genes in the compartments, and consequently, the biochemical reaction efficiency was significantly increased. This work not only provided a simplified model for rational molecular programming of genes circuit compartments on nanointerface but also presented implications for the cellular structure-function relationship.

Loading next page...
 
/lp/pubmed/gene-circuit-compartment-on-nanointerface-facilitatating-cascade-gene-m9nh0Y5J70

References (46)

ISSN
0002-7863
eISSN
1520-5126
DOI
10.1021/jacs.9b11407
pmid
31721571

Abstract

Cellular genes that are functionally related to each other are usually confined in specialized subcellular compartments for efficient biochemical reactions. Construction of spatially controlled biosynthetic systems will facilitate the study of biological design principles. Herein, we fabricated a gene circuit compartment by coanchoring two function-related genes on surface of gold nanoparticles and investigated the compartment effect on cascade gene expression in a cell-free system. The gene circuit consisted of a T7 RNA polymerase (T7 RNAP) expression cassette as regulatory gene and a fluorescent protein expression cassette as regulated reporter gene. Both the expression cassettes were attached on a Y-shaped DNA nanostructure whose other two branches were mercapto-modified in order to steadily anchor the gene expression cassettes on the surface of gold nanoparticles. Experimental results demonstrated that both the yield and initial expression rate of the fluorescent reporter protein in the gene circuit compartment system were enhanced compared with those in free gene circuit system. Mechanism investigation revealed that the gene circuit compartment on nanoparticle made the regulatory gene and regulated reporter gene spatially proximal at nanoscale, thus effectively improving the transfer efficiency of the regulatory proteins (T7 RNAP) from regulatory genes to the regulated reporter genes in the compartments, and consequently, the biochemical reaction efficiency was significantly increased. This work not only provided a simplified model for rational molecular programming of genes circuit compartments on nanointerface but also presented implications for the cellular structure-function relationship.

Journal

Journal of the American Chemical SocietyPubmed

Published: Oct 6, 2020

There are no references for this article.