Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Self-Integratable, Healable, and Stretchable Electroluminescent Device Fabricated via Dynamic Urea Bonds Equipped in Polyurethane.

Self-Integratable, Healable, and Stretchable Electroluminescent Device Fabricated via Dynamic... Reversible bonding between polymer chains has been used primarily to induce self-healing of damaged polymers. Inspired by the dynamic nature of such bonding, we have developed a polyurethane equipped with dynamic urea bonds (PEDUB) that has high strength sufficient to make it be freestanding and have a healing capability and self-bonding property. This allowed subsequent heterogeneous multicomponent device integration of electrodes/substrate and light-emitting pixels into a light-emitting device. We first used the PEDUB to individually fabricate a highly stretchable electrode containing Ag nanowires and stretchable composites with ZnS-based particles. They were successfully assembled into a stretchable, waterproof electroluminescent (EL) device even under mild conditions (60 °C for 10 min) owing to the reversible exchange of urea bonds and low glass transition temperature of PEDUB. The assembled device with an AC-driven EL architecture retained excellent EL characteristics even after stretching, submersion in water, and cutting owing to the robust solid-state bonding interfaces induced by the dynamic urea bonds. Consequently, various shapes of the illuminating elastomer and an illuminated picture were realized for the first time using the mosaic-like assembly method. This first demonstration of multicomponent assembly paves the way for future stretchable multifunctional devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACS Applied Materials & Interfaces Pubmed

Self-Integratable, Healable, and Stretchable Electroluminescent Device Fabricated via Dynamic Urea Bonds Equipped in Polyurethane.

ACS Applied Materials & Interfaces , Volume 12 (9): 10 – Mar 5, 2020

Self-Integratable, Healable, and Stretchable Electroluminescent Device Fabricated via Dynamic Urea Bonds Equipped in Polyurethane.


Abstract

Reversible bonding between polymer chains has been used primarily to induce self-healing of damaged polymers. Inspired by the dynamic nature of such bonding, we have developed a polyurethane equipped with dynamic urea bonds (PEDUB) that has high strength sufficient to make it be freestanding and have a healing capability and self-bonding property. This allowed subsequent heterogeneous multicomponent device integration of electrodes/substrate and light-emitting pixels into a light-emitting device. We first used the PEDUB to individually fabricate a highly stretchable electrode containing Ag nanowires and stretchable composites with ZnS-based particles. They were successfully assembled into a stretchable, waterproof electroluminescent (EL) device even under mild conditions (60 °C for 10 min) owing to the reversible exchange of urea bonds and low glass transition temperature of PEDUB. The assembled device with an AC-driven EL architecture retained excellent EL characteristics even after stretching, submersion in water, and cutting owing to the robust solid-state bonding interfaces induced by the dynamic urea bonds. Consequently, various shapes of the illuminating elastomer and an illuminated picture were realized for the first time using the mosaic-like assembly method. This first demonstration of multicomponent assembly paves the way for future stretchable multifunctional devices.

Loading next page...
 
/lp/pubmed/self-integratable-healable-and-stretchable-electroluminescent-device-ZgqY1muc4t

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1944-8244
DOI
10.1021/acsami.9b21789
pmid
32053751

Abstract

Reversible bonding between polymer chains has been used primarily to induce self-healing of damaged polymers. Inspired by the dynamic nature of such bonding, we have developed a polyurethane equipped with dynamic urea bonds (PEDUB) that has high strength sufficient to make it be freestanding and have a healing capability and self-bonding property. This allowed subsequent heterogeneous multicomponent device integration of electrodes/substrate and light-emitting pixels into a light-emitting device. We first used the PEDUB to individually fabricate a highly stretchable electrode containing Ag nanowires and stretchable composites with ZnS-based particles. They were successfully assembled into a stretchable, waterproof electroluminescent (EL) device even under mild conditions (60 °C for 10 min) owing to the reversible exchange of urea bonds and low glass transition temperature of PEDUB. The assembled device with an AC-driven EL architecture retained excellent EL characteristics even after stretching, submersion in water, and cutting owing to the robust solid-state bonding interfaces induced by the dynamic urea bonds. Consequently, various shapes of the illuminating elastomer and an illuminated picture were realized for the first time using the mosaic-like assembly method. This first demonstration of multicomponent assembly paves the way for future stretchable multifunctional devices.

Journal

ACS Applied Materials & InterfacesPubmed

Published: Mar 5, 2020

There are no references for this article.