Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Nanoparticle-Induced Anomalous Hall Effect in Graphene.

Nanoparticle-Induced Anomalous Hall Effect in Graphene. Schemes for introducing magnetic properties into graphene are of fundamental interest and could enable the development of electrically controlled magnetic devices, thereby extending graphene's applications from conventional electronics to spintronics. Proximity-induced ferromagnetism (PIFM) has been reported for graphene coupled to adjacent ferromagnetic insulators (FMIs). PIFM from an FMI preserves graphene's high carrier mobility and does not introduce a parallel current path. However, few FMIs other than yttrium-iron-garnet are suitable for practical applications due to difficulties in their growth and deposition and to their typically low Curie temperatures. Furthermore, it is difficult to obtain a high-quality FMI/graphene interface by graphene transfer methods, which are essential for obtaining the required interfacial exchange coupling. Here, we report the observation of the anomalous Hall effect (AHE) in graphene proximity coupled to an array of magnetic nanoparticles. This observation of AHE in graphene in proximity to a discontinuous magnetic structure opens the door to realizing magnetic properties in graphene from a greatly expanded range of materials and offers new possibilities for realizing patterned spintronic devices and circuitry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nano Letters Pubmed

Nanoparticle-Induced Anomalous Hall Effect in Graphene.

Nano Letters , Volume 19 (10): 7 – Sep 28, 2020

Nanoparticle-Induced Anomalous Hall Effect in Graphene.


Abstract

Schemes for introducing magnetic properties into graphene are of fundamental interest and could enable the development of electrically controlled magnetic devices, thereby extending graphene's applications from conventional electronics to spintronics. Proximity-induced ferromagnetism (PIFM) has been reported for graphene coupled to adjacent ferromagnetic insulators (FMIs). PIFM from an FMI preserves graphene's high carrier mobility and does not introduce a parallel current path. However, few FMIs other than yttrium-iron-garnet are suitable for practical applications due to difficulties in their growth and deposition and to their typically low Curie temperatures. Furthermore, it is difficult to obtain a high-quality FMI/graphene interface by graphene transfer methods, which are essential for obtaining the required interfacial exchange coupling. Here, we report the observation of the anomalous Hall effect (AHE) in graphene proximity coupled to an array of magnetic nanoparticles. This observation of AHE in graphene in proximity to a discontinuous magnetic structure opens the door to realizing magnetic properties in graphene from a greatly expanded range of materials and offers new possibilities for realizing patterned spintronic devices and circuitry.

Loading next page...
 
/lp/pubmed/nanoparticle-induced-anomalous-hall-effect-in-graphene-vxmvXPpWR6

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1530-6984
eISSN
1530-6992
DOI
10.1021/acs.nanolett.9b02643
pmid
31513412

Abstract

Schemes for introducing magnetic properties into graphene are of fundamental interest and could enable the development of electrically controlled magnetic devices, thereby extending graphene's applications from conventional electronics to spintronics. Proximity-induced ferromagnetism (PIFM) has been reported for graphene coupled to adjacent ferromagnetic insulators (FMIs). PIFM from an FMI preserves graphene's high carrier mobility and does not introduce a parallel current path. However, few FMIs other than yttrium-iron-garnet are suitable for practical applications due to difficulties in their growth and deposition and to their typically low Curie temperatures. Furthermore, it is difficult to obtain a high-quality FMI/graphene interface by graphene transfer methods, which are essential for obtaining the required interfacial exchange coupling. Here, we report the observation of the anomalous Hall effect (AHE) in graphene proximity coupled to an array of magnetic nanoparticles. This observation of AHE in graphene in proximity to a discontinuous magnetic structure opens the door to realizing magnetic properties in graphene from a greatly expanded range of materials and offers new possibilities for realizing patterned spintronic devices and circuitry.

Journal

Nano LettersPubmed

Published: Sep 28, 2020

There are no references for this article.