Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Enhancement of Metal-Binding Properties in Hemoglobin: The Role of Mild Damaging Factors.

The Enhancement of Metal-Binding Properties in Hemoglobin: The Role of Mild Damaging Factors. X-ray studies revealed the considerable enhancement of metal-binding properties in human hemoglobin under exposure to mild damaging factors (in the presence of 0.09 M urea or upon heating for 30 min at 50 °C). Changes in the element composition of the hemoglobin monolayer, formed on the water subphase in the Langmuir trough, have been monitored in real time by the total external reflection X-ray fluorescence measurements. X-ray absorption spectroscopy has been applied to study the local environment of zinc ions bound on hemoglobin molecules. According to these data, each zinc ion is coordinated by four ligands, two of which are cysteine and histidine. The oxidative stress has been found to accelerate extensively the enhancement of metal-binding ability in protein. A two-stage mechanism has been proposed as a possible explanation of the observed phenomenon: First, in the presence of the mild damaging agents, protein molecules can undergo a transition from the native conformation to a more labile intermediate state that increases the accessibility of amino acid residues (in particular cysteine). At the second stage, oxidation of cysteine and the subsequent activation of cysteine SH groups can affect markedly the protein-metal interaction. The presented investigations provide a deeper insight into the pathogenesis of metabolic disorders that excessive concentrations of the endogenic toxicants might trigger in an organism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physical Chemistry B Pubmed

The Enhancement of Metal-Binding Properties in Hemoglobin: The Role of Mild Damaging Factors.

The Journal of Physical Chemistry B , Volume 123 (40): 8 – Aug 14, 2020

The Enhancement of Metal-Binding Properties in Hemoglobin: The Role of Mild Damaging Factors.


Abstract

X-ray studies revealed the considerable enhancement of metal-binding properties in human hemoglobin under exposure to mild damaging factors (in the presence of 0.09 M urea or upon heating for 30 min at 50 °C). Changes in the element composition of the hemoglobin monolayer, formed on the water subphase in the Langmuir trough, have been monitored in real time by the total external reflection X-ray fluorescence measurements. X-ray absorption spectroscopy has been applied to study the local environment of zinc ions bound on hemoglobin molecules. According to these data, each zinc ion is coordinated by four ligands, two of which are cysteine and histidine. The oxidative stress has been found to accelerate extensively the enhancement of metal-binding ability in protein. A two-stage mechanism has been proposed as a possible explanation of the observed phenomenon: First, in the presence of the mild damaging agents, protein molecules can undergo a transition from the native conformation to a more labile intermediate state that increases the accessibility of amino acid residues (in particular cysteine). At the second stage, oxidation of cysteine and the subsequent activation of cysteine SH groups can affect markedly the protein-metal interaction. The presented investigations provide a deeper insight into the pathogenesis of metabolic disorders that excessive concentrations of the endogenic toxicants might trigger in an organism.

Loading next page...
 
/lp/pubmed/the-enhancement-of-metal-binding-properties-in-hemoglobin-the-role-of-sNV0XQaOfk

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1520-6106
eISSN
1520-5207
DOI
10.1021/acs.jpcb.9b06571
pmid
31513409

Abstract

X-ray studies revealed the considerable enhancement of metal-binding properties in human hemoglobin under exposure to mild damaging factors (in the presence of 0.09 M urea or upon heating for 30 min at 50 °C). Changes in the element composition of the hemoglobin monolayer, formed on the water subphase in the Langmuir trough, have been monitored in real time by the total external reflection X-ray fluorescence measurements. X-ray absorption spectroscopy has been applied to study the local environment of zinc ions bound on hemoglobin molecules. According to these data, each zinc ion is coordinated by four ligands, two of which are cysteine and histidine. The oxidative stress has been found to accelerate extensively the enhancement of metal-binding ability in protein. A two-stage mechanism has been proposed as a possible explanation of the observed phenomenon: First, in the presence of the mild damaging agents, protein molecules can undergo a transition from the native conformation to a more labile intermediate state that increases the accessibility of amino acid residues (in particular cysteine). At the second stage, oxidation of cysteine and the subsequent activation of cysteine SH groups can affect markedly the protein-metal interaction. The presented investigations provide a deeper insight into the pathogenesis of metabolic disorders that excessive concentrations of the endogenic toxicants might trigger in an organism.

Journal

The Journal of Physical Chemistry BPubmed

Published: Aug 14, 2020

There are no references for this article.