Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Metal-Assisted Delayed Fluorescent Pd(II) Complexes and Phosphorescent Pt(II) Complex Based on [1,2,4]Triazolo[4,3-a]pyridine-Containing Ligands: Synthesis, Characterization, Electrochemistry, Photophysical Studies, and Application.

Metal-Assisted Delayed Fluorescent Pd(II) Complexes and Phosphorescent Pt(II) Complex Based on... The synthesis and photophysical characterization of a series of tetradentate cyclometalated M(tzpPh-O-CzPy-R) complexes and their analogues are reported, where M is palladium or platinum and a tetradentate cyclometalating ligand contains tzpPh (3-phenyl-[1,2,4]triazolo[4,3-a]pyridine) and CzPy (carbazolylpyridine) moieties linked with an oxygen atom. Variations of the σ-electron-donating group R on the ligand significantly affect the photophysical properties of the complexes. By using the strong electron-withdrawing tzp portion as an acceptor and the carbazole portion as a donor, a series of Pd(II)-based metal-assisted delayed fluorescence (MADF) materials was developed. Electrochemical analysis demonstrates the irreversible reduction process occurs on the tzp ring and the irreversible oxidation process mainly occurs on the metal-phenyl moiety. This is in agreement with the HOMO and LUMO distributions by the DFT calculations, which also shows that the Pt(II) complex has more metal orbital character than those of the Pd(II) complexes. Most of the Pd(II) complexes reported here are highly emissive at 77 K in 2-MeTHF with luminescent lifetimes in the millisecond range (τ = 1.96-2.36 ms) and λmax = 488-499 nm; however, the luminescent lifetimes are shortened to the microsecond range (τ = 26.7-152.9 μs in solution and 57.0-109.9 μs in thin film respectively) at room temperature. The quantum efficiency of the Pd(II) complexes can be increased by more than 8-fold through structure modification with σ-donating groups on the ligand. Especially, the Pd(tzp-3) has a small ΔEST of 0.228 eV and exhibits strong typical MADF in PMMA film. The Pt(II) complex Pt(tzp-2) exhibits high thermal stability (ΔT0.5% = 440 °C) and high quantum efficiency (Φ = 50.1%) in dichloromethane solution with τ of 15.8 μs. The Pt(tzp-2) based bright green OLED achieved a peak EQE of 8.7% and a maximum brightness of 28280 cd/m2 using an unoptimized device structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Inorganic Chemistry Pubmed

Metal-Assisted Delayed Fluorescent Pd(II) Complexes and Phosphorescent Pt(II) Complex Based on [1,2,4]Triazolo[4,3-a]pyridine-Containing Ligands: Synthesis, Characterization, Electrochemistry, Photophysical Studies, and Application.

Inorganic Chemistry , Volume 58 (21): 12 – Nov 13, 2019

Metal-Assisted Delayed Fluorescent Pd(II) Complexes and Phosphorescent Pt(II) Complex Based on [1,2,4]Triazolo[4,3-a]pyridine-Containing Ligands: Synthesis, Characterization, Electrochemistry, Photophysical Studies, and Application.


Abstract

The synthesis and photophysical characterization of a series of tetradentate cyclometalated M(tzpPh-O-CzPy-R) complexes and their analogues are reported, where M is palladium or platinum and a tetradentate cyclometalating ligand contains tzpPh (3-phenyl-[1,2,4]triazolo[4,3-a]pyridine) and CzPy (carbazolylpyridine) moieties linked with an oxygen atom. Variations of the σ-electron-donating group R on the ligand significantly affect the photophysical properties of the complexes. By using the strong electron-withdrawing tzp portion as an acceptor and the carbazole portion as a donor, a series of Pd(II)-based metal-assisted delayed fluorescence (MADF) materials was developed. Electrochemical analysis demonstrates the irreversible reduction process occurs on the tzp ring and the irreversible oxidation process mainly occurs on the metal-phenyl moiety. This is in agreement with the HOMO and LUMO distributions by the DFT calculations, which also shows that the Pt(II) complex has more metal orbital character than those of the Pd(II) complexes. Most of the Pd(II) complexes reported here are highly emissive at 77 K in 2-MeTHF with luminescent lifetimes in the millisecond range (τ = 1.96-2.36 ms) and λmax = 488-499 nm; however, the luminescent lifetimes are shortened to the microsecond range (τ = 26.7-152.9 μs in solution and 57.0-109.9 μs in thin film respectively) at room temperature. The quantum efficiency of the Pd(II) complexes can be increased by more than 8-fold through structure modification with σ-donating groups on the ligand. Especially, the Pd(tzp-3) has a small ΔEST of 0.228 eV and exhibits strong typical MADF in PMMA film. The Pt(II) complex Pt(tzp-2) exhibits high thermal stability (ΔT0.5% = 440 °C) and high quantum efficiency (Φ = 50.1%) in dichloromethane solution with τ of 15.8 μs. The Pt(tzp-2) based bright green OLED achieved a peak EQE of 8.7% and a maximum brightness of 28280 cd/m2 using an unoptimized device structure.

Loading next page...
 
/lp/pubmed/metal-assisted-delayed-fluorescent-pd-ii-complexes-and-phosphorescent-ycpEV9Cg5k

References (89)

ISSN
0020-1669
eISSN
1520-510X
DOI
10.1021/acs.inorgchem.9b01617
pmid
31498601

Abstract

The synthesis and photophysical characterization of a series of tetradentate cyclometalated M(tzpPh-O-CzPy-R) complexes and their analogues are reported, where M is palladium or platinum and a tetradentate cyclometalating ligand contains tzpPh (3-phenyl-[1,2,4]triazolo[4,3-a]pyridine) and CzPy (carbazolylpyridine) moieties linked with an oxygen atom. Variations of the σ-electron-donating group R on the ligand significantly affect the photophysical properties of the complexes. By using the strong electron-withdrawing tzp portion as an acceptor and the carbazole portion as a donor, a series of Pd(II)-based metal-assisted delayed fluorescence (MADF) materials was developed. Electrochemical analysis demonstrates the irreversible reduction process occurs on the tzp ring and the irreversible oxidation process mainly occurs on the metal-phenyl moiety. This is in agreement with the HOMO and LUMO distributions by the DFT calculations, which also shows that the Pt(II) complex has more metal orbital character than those of the Pd(II) complexes. Most of the Pd(II) complexes reported here are highly emissive at 77 K in 2-MeTHF with luminescent lifetimes in the millisecond range (τ = 1.96-2.36 ms) and λmax = 488-499 nm; however, the luminescent lifetimes are shortened to the microsecond range (τ = 26.7-152.9 μs in solution and 57.0-109.9 μs in thin film respectively) at room temperature. The quantum efficiency of the Pd(II) complexes can be increased by more than 8-fold through structure modification with σ-donating groups on the ligand. Especially, the Pd(tzp-3) has a small ΔEST of 0.228 eV and exhibits strong typical MADF in PMMA film. The Pt(II) complex Pt(tzp-2) exhibits high thermal stability (ΔT0.5% = 440 °C) and high quantum efficiency (Φ = 50.1%) in dichloromethane solution with τ of 15.8 μs. The Pt(tzp-2) based bright green OLED achieved a peak EQE of 8.7% and a maximum brightness of 28280 cd/m2 using an unoptimized device structure.

Journal

Inorganic ChemistryPubmed

Published: Nov 13, 2019

There are no references for this article.