Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Light Confinement Effect Induced Highly Sensitive, Self‐Driven Near‐Infrared Photodetector and Image Sensor Based on Multilayer PdSe2/Pyramid Si Heterojunction

Light Confinement Effect Induced Highly Sensitive, Self‐Driven Near‐Infrared Photodetector and... In this study, a highly sensitive and self‐driven near‐infrared (NIR) light photodetector based on PdSe2/pyramid Si heterojunction arrays, which are fabricated through simple selenization of predeposited Pd nanofilm on black Si, is demonstrated. The as‐fabricated hybrid device exhibits excellent photoresponse performance in terms of a large on/off ratio of 1.6 × 105, a responsivity of 456 mA W−1, and a high specific detectivity of up to 9.97 × 1013 Jones under 980 nm illumination at zero bias. Such a relatively high sensitivity can be ascribed to the light trapping effect of the pyramid microstructure, which is confirmed by numerical modeling based on finite‐difference time domain. On the other hand, thanks to the broad optical absorption properties of PdSe2, the as‐fabricated device also exhibits obvious sensitivity to other NIR illuminations with wavelengths of 1300, 1550, and 1650 nm, which is beyond the photoresponse range of Si‐based devices. It is also found that the PdSe2/pyramid Si heterojunction device can also function as an NIR light sensor, which can readily record both “tree” and “house” images produced by 980 and 1300 nm illumination, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Small Wiley

Light Confinement Effect Induced Highly Sensitive, Self‐Driven Near‐Infrared Photodetector and Image Sensor Based on Multilayer PdSe2/Pyramid Si Heterojunction

Loading next page...
 
/lp/wiley/light-confinement-effect-induced-highly-sensitive-self-driven-near-kqxCNT6Olr

References (48)

Publisher
Wiley
Copyright
© 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1613-6810
eISSN
1613-6829
DOI
10.1002/smll.201903831
Publisher site
See Article on Publisher Site

Abstract

In this study, a highly sensitive and self‐driven near‐infrared (NIR) light photodetector based on PdSe2/pyramid Si heterojunction arrays, which are fabricated through simple selenization of predeposited Pd nanofilm on black Si, is demonstrated. The as‐fabricated hybrid device exhibits excellent photoresponse performance in terms of a large on/off ratio of 1.6 × 105, a responsivity of 456 mA W−1, and a high specific detectivity of up to 9.97 × 1013 Jones under 980 nm illumination at zero bias. Such a relatively high sensitivity can be ascribed to the light trapping effect of the pyramid microstructure, which is confirmed by numerical modeling based on finite‐difference time domain. On the other hand, thanks to the broad optical absorption properties of PdSe2, the as‐fabricated device also exhibits obvious sensitivity to other NIR illuminations with wavelengths of 1300, 1550, and 1650 nm, which is beyond the photoresponse range of Si‐based devices. It is also found that the PdSe2/pyramid Si heterojunction device can also function as an NIR light sensor, which can readily record both “tree” and “house” images produced by 980 and 1300 nm illumination, respectively.

Journal

SmallWiley

Published: Oct 1, 2019

Keywords: ; ; ; ;

There are no references for this article.