Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Enantiodifferentiating Photodimerization of a 2,6‐Disubstituted Anthracene Assisted by Supramolecular Double‐Helix Formation with Chiral Amines

Enantiodifferentiating Photodimerization of a 2,6‐Disubstituted Anthracene Assisted by... A novel 2,6‐anthrylene‐linked bis(m‐terphenylcarboxylic acid) strand (1) self‐associates into a racemic double‐helix. In the presence of chiral mono‐ and diamines, either a right‐ or left‐handed double‐helix was predominantly induced by chiral amines sandwiched between the carboxylic acid strands with accompanying stacking of the two prochiral anthracene linker units in an enantiotopic face‐selective way, as revealed by circular dichroism and NMR spectral analyses. The photoirradiation of the optically active double helices complexed with chiral amines proceeded in a diastereo‐ (anti or syn) and enantiodifferentiating way to afford the chiral anti‐photodimer with up to 98 % enantiomeric excess when (R)‐phenylethylamine was used as a chiral double‐helix inducer. The resulting optically active anti‐photodimer can recognize the chirality of amines and diastereoselectively complex with chiral amines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Angewandte Chemie International Edition Wiley

Enantiodifferentiating Photodimerization of a 2,6‐Disubstituted Anthracene Assisted by Supramolecular Double‐Helix Formation with Chiral Amines

Loading next page...
 
/lp/wiley/enantiodifferentiating-photodimerization-of-a-2-6-disubstituted-YsB0o86O1x

References (50)

Publisher
Wiley
Copyright
© 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1433-7851
eISSN
1521-3773
DOI
10.1002/anie.201916103
Publisher site
See Article on Publisher Site

Abstract

A novel 2,6‐anthrylene‐linked bis(m‐terphenylcarboxylic acid) strand (1) self‐associates into a racemic double‐helix. In the presence of chiral mono‐ and diamines, either a right‐ or left‐handed double‐helix was predominantly induced by chiral amines sandwiched between the carboxylic acid strands with accompanying stacking of the two prochiral anthracene linker units in an enantiotopic face‐selective way, as revealed by circular dichroism and NMR spectral analyses. The photoirradiation of the optically active double helices complexed with chiral amines proceeded in a diastereo‐ (anti or syn) and enantiodifferentiating way to afford the chiral anti‐photodimer with up to 98 % enantiomeric excess when (R)‐phenylethylamine was used as a chiral double‐helix inducer. The resulting optically active anti‐photodimer can recognize the chirality of amines and diastereoselectively complex with chiral amines.

Journal

Angewandte Chemie International EditionWiley

Published: Apr 4, 2020

Keywords: ; ; ; ;

There are no references for this article.