Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Early Diagnosis of Functional Damage in Patients With Glaucoma

Early Diagnosis of Functional Damage in Patients With Glaucoma Abstract Automated white-on-white static threshold perimetry, introduced some 20 years ago by Bebie and colleagues,1 has provided a new and generally higher standard of perimetric testing than was previously available. However, it has not met our initial expectations of providing sensitive and reliable evidence of early glaucomatous optic neuropathy. The first reproducible perimetric defects generally develop late in the disease, and the high rate of long-term fluctuation confounds our ability to detect disease progression. This realization has sparked a search for more reliable, early markers of glaucomatous optic neuropathy. Such markers would identify those patients who are most likely to benefit from treatment and spare others the costs and considerable morbidity of treatment. See also page 26 There have been proponents of structural and functional approaches toward the identification of early glaucomatous damage. Clinical and histological studies have suggested that detectable structural changes generally precede structural abnormalities detected with standard References 1. Bebie H, Fankhauser F, Spahr J. Static perimetry: accuracy and fluctuations . Acta Ophthamol . 1976;54:339-348.Crossref 2. Read RM, Spaeth GL. The practical clinical appraisal of the optic disc in glaucoma: the natural history of cup progression and some specific disc-field correlations . Trans Am Acad Ophthalmol Otolaryngol . 1974;78:OP255-OP274. 3. Sommer A, Pollack I, Maumenee AE. Optic disc parameters and onset of glaucomatous field loss, I: methods and progressive changes in disc morphology . Arch Ophthalmol . 1979;9:1444-1448.Crossref 4. Pederson JE, Anderson DR. The mode of progressive disc cupping in ocular hypertension and glaucoma . Arch Ophthalmol . 1990;98:490-495.Crossref 5. Yablonski ME, Zimmerman TJ, Kass MA, et al. Prognostic significance of optic disc cupping in ocular hypertensive patients . Am J Ophthalmol . 1980;89:585-592. 6. Odberg T, Riise D. Early diagnosis of glaucoma: the value of successive stereophotography of the optic disc . Acta Ophthalmol . 1985;63:257-263.Crossref 7. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss . Arch Ophthalmol . 1991;109:77-83.Crossref 8. Zeyen TG, Caprioli J. Progression of disc and field damage in early glaucoma . Arch Ophthalmol . 1993;111:62-65.Crossref 9. Mikelberg FS, Douglas GR, Schulzer M, et al. Reliability of optic disc topographic measurements recorded with a video-ophthalmograph . Am J Ophthalmol . 1984;98:98-102.Crossref 10. Shields MB, Martone JF, Shelton AR, et al. Reproducibility of topographic measurements with the optic nerve head analyzer . Am J Ophthalmol . 1987;104:581-586. 11. Caprioli J, Miler JM. Measurement of relative nerve fiber layer surface height in glaucoma . Ophthalmology . 1989;96:633-639.Crossref 12. Dreher AW, Tso PC, Weinreb RN. Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner . Am J Ophthalmol . 1991;111:221-229. 13. Brigatti L, Caprioli J. Correlation of visual field function with confocal laser disc measurements in glaucoma . Arch Ophthalmol . 1995;113:1191-1194.Crossref 14. Weinreb RN, Dreher AW, Coleman A, et al. Histopathologic validation of Fourierellipsometry measurements of retinal nerve fiber layer thickness . Arch Ophthalmol . 1990;108:557-560.Crossref 15. Schuman JS, Hee MR, Puliafita CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography . Arch Ophthalmol . 1995;113:586-596.Crossref 16. Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers . Ophthalmology . 1988;95:357-363.Crossref 17. Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma . Invest Ophthalmol Vis Sci . 1991;32:484-491. 18. Johnson CA. Selective vs nonselective losses in glaucoma . J Glaucoma . 1994;3:S32-S44. 19. Wall M, Jennisch CS, Munden PM. Motion perimetry identifies nerve fiber bundlelike defects in ocular hypertension . Arch Ophthalmol . 1996;114:26-33. 20. Silverman SE, Trick GL, Hart WM. Motion perception is abnormal in primary open-angle glaucoma and ocular hypertension . Invest Ophthalmol Vis Sci . 1990;31:722-729. 21. Bullimore MA, Wood JM, Swenson K. Motion perception in glaucoma . Invest Ophthalmol Vis Sci . 1993;34:3526-3533. 22. Baez KA, McNaught Al, Dowler JG, Poinoosawmy D, Fitzke FW, Hitchings RA. Motion detection threshold and field progression in normal tension glaucoma . Br J Ophthalmol . 1995;79:125-128.Crossref 23. Wall M, Ketoff KM. Random dot motion perimetry in patients with glaucoma and in normal subjects . Am J Ophthalmol . 1995;120:587-596. 24. Sample PA, Weinreb RN. Color perimetry for assessment of primary openangle glaucoma . Invest Ophthalmol Vis Sci . 1990;31:1869-1875. 25. Hart WM, Silverman SE, Trick GL, Nesher R, Gordon MO. Glaucomatous visual field damage: luminance and color-contrast sensitivities . Invest Ophthalmol Vis Sci . 1990;31:359-367. 26. Sample PA, Taylor JD, Martinez GA, Lusky M, Weinreb RH. Short-wavelength color visual fields in glaucoma suspects at risk . Am J Ophthalmol . 1993;115:225-233. 27. Johnson CA, Adams AJ, Casson EJ, Brandt JD. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss . Arch Ophthalmol . 1993;111:645-650.Crossref 28. Johnson CA, Adams AJ, Casson EJ, Brandt JD. Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry . Arch Ophthalmol . 1993;111:651-656.Crossref 29. Johnson CA, Brandt JD, Khong AM, Adams AJ. Short-wavelength automated perimetry in low-, medium-, and high-risk ocular hypertensive eyes: initial baseline results . Arch Ophthalmol . 1995;113:70-76.Crossref 30. Felius J, de Jong LA, van den Berg TJ, Greve EL. Functional characteristics of blue-on-yellow perimetric thresholds in glaucoma . Invest Ophthalmol Vis Sci . 1995;36:1665-1674. 31. Wild JM, Moss ID, Whitaker D, O'Neill EC. The statistical interpretation of blueon-yellow visual field loss . Invest Ophthalmol Vis Sci . 1995;36:1398-1410. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Ophthalmology American Medical Association

Early Diagnosis of Functional Damage in Patients With Glaucoma

Archives of Ophthalmology , Volume 115 (1) – Jan 1, 1997

Loading next page...
 
/lp/american-medical-association/early-diagnosis-of-functional-damage-in-patients-with-glaucoma-bnF0MYr9oU

References (33)

Publisher
American Medical Association
Copyright
Copyright © 1997 American Medical Association. All Rights Reserved.
ISSN
0003-9950
eISSN
1538-3687
DOI
10.1001/archopht.1997.01100150115021
Publisher site
See Article on Publisher Site

Abstract

Abstract Automated white-on-white static threshold perimetry, introduced some 20 years ago by Bebie and colleagues,1 has provided a new and generally higher standard of perimetric testing than was previously available. However, it has not met our initial expectations of providing sensitive and reliable evidence of early glaucomatous optic neuropathy. The first reproducible perimetric defects generally develop late in the disease, and the high rate of long-term fluctuation confounds our ability to detect disease progression. This realization has sparked a search for more reliable, early markers of glaucomatous optic neuropathy. Such markers would identify those patients who are most likely to benefit from treatment and spare others the costs and considerable morbidity of treatment. See also page 26 There have been proponents of structural and functional approaches toward the identification of early glaucomatous damage. Clinical and histological studies have suggested that detectable structural changes generally precede structural abnormalities detected with standard References 1. Bebie H, Fankhauser F, Spahr J. Static perimetry: accuracy and fluctuations . Acta Ophthamol . 1976;54:339-348.Crossref 2. Read RM, Spaeth GL. The practical clinical appraisal of the optic disc in glaucoma: the natural history of cup progression and some specific disc-field correlations . Trans Am Acad Ophthalmol Otolaryngol . 1974;78:OP255-OP274. 3. Sommer A, Pollack I, Maumenee AE. Optic disc parameters and onset of glaucomatous field loss, I: methods and progressive changes in disc morphology . Arch Ophthalmol . 1979;9:1444-1448.Crossref 4. Pederson JE, Anderson DR. The mode of progressive disc cupping in ocular hypertension and glaucoma . Arch Ophthalmol . 1990;98:490-495.Crossref 5. Yablonski ME, Zimmerman TJ, Kass MA, et al. Prognostic significance of optic disc cupping in ocular hypertensive patients . Am J Ophthalmol . 1980;89:585-592. 6. Odberg T, Riise D. Early diagnosis of glaucoma: the value of successive stereophotography of the optic disc . Acta Ophthalmol . 1985;63:257-263.Crossref 7. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss . Arch Ophthalmol . 1991;109:77-83.Crossref 8. Zeyen TG, Caprioli J. Progression of disc and field damage in early glaucoma . Arch Ophthalmol . 1993;111:62-65.Crossref 9. Mikelberg FS, Douglas GR, Schulzer M, et al. Reliability of optic disc topographic measurements recorded with a video-ophthalmograph . Am J Ophthalmol . 1984;98:98-102.Crossref 10. Shields MB, Martone JF, Shelton AR, et al. Reproducibility of topographic measurements with the optic nerve head analyzer . Am J Ophthalmol . 1987;104:581-586. 11. Caprioli J, Miler JM. Measurement of relative nerve fiber layer surface height in glaucoma . Ophthalmology . 1989;96:633-639.Crossref 12. Dreher AW, Tso PC, Weinreb RN. Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner . Am J Ophthalmol . 1991;111:221-229. 13. Brigatti L, Caprioli J. Correlation of visual field function with confocal laser disc measurements in glaucoma . Arch Ophthalmol . 1995;113:1191-1194.Crossref 14. Weinreb RN, Dreher AW, Coleman A, et al. Histopathologic validation of Fourierellipsometry measurements of retinal nerve fiber layer thickness . Arch Ophthalmol . 1990;108:557-560.Crossref 15. Schuman JS, Hee MR, Puliafita CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography . Arch Ophthalmol . 1995;113:586-596.Crossref 16. Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers . Ophthalmology . 1988;95:357-363.Crossref 17. Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma . Invest Ophthalmol Vis Sci . 1991;32:484-491. 18. Johnson CA. Selective vs nonselective losses in glaucoma . J Glaucoma . 1994;3:S32-S44. 19. Wall M, Jennisch CS, Munden PM. Motion perimetry identifies nerve fiber bundlelike defects in ocular hypertension . Arch Ophthalmol . 1996;114:26-33. 20. Silverman SE, Trick GL, Hart WM. Motion perception is abnormal in primary open-angle glaucoma and ocular hypertension . Invest Ophthalmol Vis Sci . 1990;31:722-729. 21. Bullimore MA, Wood JM, Swenson K. Motion perception in glaucoma . Invest Ophthalmol Vis Sci . 1993;34:3526-3533. 22. Baez KA, McNaught Al, Dowler JG, Poinoosawmy D, Fitzke FW, Hitchings RA. Motion detection threshold and field progression in normal tension glaucoma . Br J Ophthalmol . 1995;79:125-128.Crossref 23. Wall M, Ketoff KM. Random dot motion perimetry in patients with glaucoma and in normal subjects . Am J Ophthalmol . 1995;120:587-596. 24. Sample PA, Weinreb RN. Color perimetry for assessment of primary openangle glaucoma . Invest Ophthalmol Vis Sci . 1990;31:1869-1875. 25. Hart WM, Silverman SE, Trick GL, Nesher R, Gordon MO. Glaucomatous visual field damage: luminance and color-contrast sensitivities . Invest Ophthalmol Vis Sci . 1990;31:359-367. 26. Sample PA, Taylor JD, Martinez GA, Lusky M, Weinreb RH. Short-wavelength color visual fields in glaucoma suspects at risk . Am J Ophthalmol . 1993;115:225-233. 27. Johnson CA, Adams AJ, Casson EJ, Brandt JD. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss . Arch Ophthalmol . 1993;111:645-650.Crossref 28. Johnson CA, Adams AJ, Casson EJ, Brandt JD. Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry . Arch Ophthalmol . 1993;111:651-656.Crossref 29. Johnson CA, Brandt JD, Khong AM, Adams AJ. Short-wavelength automated perimetry in low-, medium-, and high-risk ocular hypertensive eyes: initial baseline results . Arch Ophthalmol . 1995;113:70-76.Crossref 30. Felius J, de Jong LA, van den Berg TJ, Greve EL. Functional characteristics of blue-on-yellow perimetric thresholds in glaucoma . Invest Ophthalmol Vis Sci . 1995;36:1665-1674. 31. Wild JM, Moss ID, Whitaker D, O'Neill EC. The statistical interpretation of blueon-yellow visual field loss . Invest Ophthalmol Vis Sci . 1995;36:1398-1410.

Journal

Archives of OphthalmologyAmerican Medical Association

Published: Jan 1, 1997

There are no references for this article.