Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Motion Perimetry Identifies Nerve Fiber Bundlelike Defects in Ocular Hypertension

Motion Perimetry Identifies Nerve Fiber Bundlelike Defects in Ocular Hypertension Abstract Objective: To determine whether patients with ocular hypertension (OHT) have elevated motion perimetry thresholds. Design: Motion perimetry uses a customized computer graphics program to detect the ability to identify a coherent shift in position of 50% of dots in a defined circular area against a background of fixed dots. Motion size threshold is defined as the smallest circular area in which dot motion is detected. Subjects respond by touching the area of the computer monitor with a light pen where motion stimuli are perceived. Reaction times (milliseconds) to stimuli and localization error (number of pixels from target center) are also obtained for each trial. Setting: University hospital ophthalmology clinic. Patients or Other Participants: Twenty-seven patients with OHT and 27 age-matched normal subjects. One eye was tested in each subject. Main Outcome Measures: Random dot motion stimuli size thresholds and total deviation probability plot data, reaction times, and spatial localization errors. Results: The patients with OHT had more abnormal test points in the total deviation probability plot analysis compared with the controls (P<.001,×2). The abnormal test points were concentrated in the superior and inferior nasal regions. Six subjects had nerve fiber bundlelike defects to motion stimuli. Six subjects (5 overlapping with the probability plot analysis) had abnormal glaucoma hemifield test results. The patients with OHT also had significantly greater localization errors. Conclusion: Motion threshold perimetry may be a more sensitive method to detect visual field abnormalities in OHT than conventional automated perimetry. References 1. Johnson CA, Adams AJ, Casson EJ, Brandt JD. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss . Arch Ophthalmol . 1993;111:645-650.Crossref 2. Hart WM Jr, Gordon MO. Color perimetry of glaucomatous visual field defects . Ophthalmology . 1984;91:338-346.Crossref 3. Phelps CD. Acuity perimetry and glaucoma . Trans Am Ophthalmol Soc . 1984;82:753-791. 4. Drum B, Breton M, Massof R, et al. Pattern discrimination perimetry: a new concept in visual field testing . Doc Ophthalmol Proc Ser . 1987;49:433-440. 5. Wanger P, Persson HE. Pattern-reversal electroretinograms and high-pass resolution perimetry in suspected or early glaucoma . Ophthalmology . 1987;94:1098-1103.Crossref 6. Kardon RH, Kirkali PA, Thompson HS. Automated pupil perimetry; pupil field mapping in patients and normal subjects . Ophthalmology . 1991;98:485-495.Crossref 7. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma . Am J Ophthalmol . 1989;107:453-464. 8. Tuulonen A, Lehtola J, Airaksinen JP. Nerve fiber layer defects with normal visual fields: do normal optic disc and normal visual field indicate absence of glaucomatous abnormality? Ophthalmology . 1993;100:587-598.Crossref 9. Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers . Ophthalmology . 1988;95:357-363.Crossref 10. Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is sizedependent in experimental glaucoma . Invest Ophthalmol Vis Sci . 1991;32:484-491. 11. Chaturvedi N, Hedley-Whyte ET, Dreyer EB. Lateral geniculate nucleus in glaucoma . Am J Ophthalmol . 1993;116:182-188. 12. Schiller PH, Logothetis NK, Charles ER. Functions of the colour-opponent and broad-band channels of the visual system . Nature . 1990;343:68-70.Crossref 13. Nakayama K, Silverman GH. Serial and parallel processing of visual feature conjunctions . Nature . 1986;320:264-265.Crossref 14. Treisman A, Souther J. Search Asymmetry: a diagnostic for preattentive processing of separable features . J Exp Psychol Gen . 1985;114:285-310.Crossref 15. Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography . J Neurosci . 1991;11:2383-2402. 16. Rumelhart DE, McClelland JL, and the PDP research group. Parallel Distributed Processing: Explorations in the Microstructure of Cognition Foundations . Boston, Mass: The MIT Press; 1986;1:472. 17. Wall M, Ketoff KM. Random dot motion perimetry in glaucoma patients and normal subjects . Am J Ophthalmol . 1996;120:587-596. 18. Wall M, Montgomery EB. Using motion perimetry to detect visual field defects in patients with idiopathic intracranial hypertension: a comparison with conventional automated perimetry . Neurology . 1995;45:1167-1175.Crossref 19. Nawrot M, Steinman SB. Real-time color-frame animation for visual psychophysics on the Macintosh computer . Behav Res Methods Instr Comput . 1994;24:439-452. 20. Fredericksen RE, Verstraten FA, van de Grind WA. Spatial summation and its interaction with the temporal integration mechanism in human motion perception . Vision Res . 1994;34:3171-3188.Crossref 21. Chauhan BC, House PH. Intratest variability in conventional and high-pass resolution perimetry . Ophthalmology . 1991;98:79-83.Crossref 22. Wall M, Lefante J, Conway M. Variability of high-pass resolution perimetry in normals and patients with idiopathic intracranial hypertension . Invest Ophthalmol Vis Sci . 1991;32:3091-3095. 23. van de Grind WA, Koenderink JJ, van Doom AJ, Milders MV, Voerman H. Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers . Vision Res . 1993;33:1089-1107.Crossref 24. House P, Schulzer M, Drance S, Douglas G. Characteristics of the normal central visual field measured with resolution perimetry . Graefes Arch Clin Exp Ophthalmol . 1991;229:8-12.Crossref 25. Wirtschafter JD, Becker WL, Howe JB, Younge BR. Glaucoma visual field analysis by computed profile of nerve fiber function in optic disc sectors . Ophthalmology . 1982;89:255-267.Crossref 26. Wall M, Conway MD, House PH, Allely R. Evaluation of sensitivity and specificity of spatial resolution and Humphrey automated perimetry in pseudotumor cerebri patients and normal subjects . Invest Ophthalmol Vis Sci . 1991;32:3306-3312. 27. Katz J, Sommer A, Gaasterland DE, Anderson DR. Comparison of analytic algorithms for detecting glaucomatous visual field loss . Arch Ophthalmol . 1991;109:1684-1689.Crossref 28. Asman P, Heijl A. Glaucoma hemifield test: automated visual field evaluation . Arch Ophthalmol . 1992;110:812-819.Crossref 29. Asman P, Heijl A. Evaluation of methods for automated hemifield analysis in perimetry . Arch Ophthalmol . 1992;110:820-826.Crossref 30. Silverman SE, Trick GL, Hart WM Jr. Motion perception is abnormal in primary open-angle glaucoma and ocular hypertension . Invest Ophthalmol Vis Sci . 1990;31:722-729. 31. Bullimore MA, Wood JM, Swenson K. Motion perception in glaucoma . Invest Ophthalmol Vis Sci . 1993;34:3526-3533. 32. Trick GL, Steinman SB, Amyot M. Motion perception deficits in glaucomatous optic neuropathy . Vision Res . 1995;35:2225-2233.Crossref 33. Johnson CA. Selective versus nonselective losses in glaucoma . J Glaucoma . 1994;3( (suppl) ):32-44. 34. Johnson CA, Marshall D, Eng KM. Displacement threshold perimetry in glaucoma using a Macintosh computer system and a 21-inch monitor . In: Mills RP, Wall M, eds. Perimetry Update 1994/1995 . Amsterdam, the Netherlands: Kugler Publications; 1995:103-110. 35. Ruben S, Fitzke F. Correlation of peripheral displacement thresholds and optic disc parameters in ocular hypertension . Br J Ophthalmol . 1994;78:291-294.Crossref 36. Sample PA, Taylor JDN, Martinez G, Lusky M, Weinreb RN. Short-wavelength color visual fields in glaucoma suspects at risk . Am J Ophthalmol . 1993;115:225-233. 37. Mateeff S, Gourevich A. Brief stimuli localization in visual periphery . Acta Physiol Pharmacol Bulg . 1984;10:64-71. 38. Aitsebaomo AP, Bedell HE. Psychophysical and saccadic information about direction for briefly presented visual targets . Vision Res . 1992;32:1729-1737.Crossref 39. Bartz AE. Eye-movement latency, duration, and response time as a function of angular displacement . J Exp Psychol . 1962;64:318-324.Crossref 40. Brito CF. Age-related Changes in the Detection and Classification of Motion in the Periphery of the Visual Field. Iowa City: University of Iowa; 1994. Thesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Ophthalmology American Medical Association

Motion Perimetry Identifies Nerve Fiber Bundlelike Defects in Ocular Hypertension

Loading next page...
 
/lp/american-medical-association/motion-perimetry-identifies-nerve-fiber-bundlelike-defects-in-ocular-qi38x8QAXh

References (42)

Publisher
American Medical Association
Copyright
Copyright © 1997 American Medical Association. All Rights Reserved.
ISSN
0003-9950
eISSN
1538-3687
DOI
10.1001/archopht.1997.01100150028003
Publisher site
See Article on Publisher Site

Abstract

Abstract Objective: To determine whether patients with ocular hypertension (OHT) have elevated motion perimetry thresholds. Design: Motion perimetry uses a customized computer graphics program to detect the ability to identify a coherent shift in position of 50% of dots in a defined circular area against a background of fixed dots. Motion size threshold is defined as the smallest circular area in which dot motion is detected. Subjects respond by touching the area of the computer monitor with a light pen where motion stimuli are perceived. Reaction times (milliseconds) to stimuli and localization error (number of pixels from target center) are also obtained for each trial. Setting: University hospital ophthalmology clinic. Patients or Other Participants: Twenty-seven patients with OHT and 27 age-matched normal subjects. One eye was tested in each subject. Main Outcome Measures: Random dot motion stimuli size thresholds and total deviation probability plot data, reaction times, and spatial localization errors. Results: The patients with OHT had more abnormal test points in the total deviation probability plot analysis compared with the controls (P<.001,×2). The abnormal test points were concentrated in the superior and inferior nasal regions. Six subjects had nerve fiber bundlelike defects to motion stimuli. Six subjects (5 overlapping with the probability plot analysis) had abnormal glaucoma hemifield test results. The patients with OHT also had significantly greater localization errors. Conclusion: Motion threshold perimetry may be a more sensitive method to detect visual field abnormalities in OHT than conventional automated perimetry. References 1. Johnson CA, Adams AJ, Casson EJ, Brandt JD. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss . Arch Ophthalmol . 1993;111:645-650.Crossref 2. Hart WM Jr, Gordon MO. Color perimetry of glaucomatous visual field defects . Ophthalmology . 1984;91:338-346.Crossref 3. Phelps CD. Acuity perimetry and glaucoma . Trans Am Ophthalmol Soc . 1984;82:753-791. 4. Drum B, Breton M, Massof R, et al. Pattern discrimination perimetry: a new concept in visual field testing . Doc Ophthalmol Proc Ser . 1987;49:433-440. 5. Wanger P, Persson HE. Pattern-reversal electroretinograms and high-pass resolution perimetry in suspected or early glaucoma . Ophthalmology . 1987;94:1098-1103.Crossref 6. Kardon RH, Kirkali PA, Thompson HS. Automated pupil perimetry; pupil field mapping in patients and normal subjects . Ophthalmology . 1991;98:485-495.Crossref 7. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma . Am J Ophthalmol . 1989;107:453-464. 8. Tuulonen A, Lehtola J, Airaksinen JP. Nerve fiber layer defects with normal visual fields: do normal optic disc and normal visual field indicate absence of glaucomatous abnormality? Ophthalmology . 1993;100:587-598.Crossref 9. Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers . Ophthalmology . 1988;95:357-363.Crossref 10. Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is sizedependent in experimental glaucoma . Invest Ophthalmol Vis Sci . 1991;32:484-491. 11. Chaturvedi N, Hedley-Whyte ET, Dreyer EB. Lateral geniculate nucleus in glaucoma . Am J Ophthalmol . 1993;116:182-188. 12. Schiller PH, Logothetis NK, Charles ER. Functions of the colour-opponent and broad-band channels of the visual system . Nature . 1990;343:68-70.Crossref 13. Nakayama K, Silverman GH. Serial and parallel processing of visual feature conjunctions . Nature . 1986;320:264-265.Crossref 14. Treisman A, Souther J. Search Asymmetry: a diagnostic for preattentive processing of separable features . J Exp Psychol Gen . 1985;114:285-310.Crossref 15. Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography . J Neurosci . 1991;11:2383-2402. 16. Rumelhart DE, McClelland JL, and the PDP research group. Parallel Distributed Processing: Explorations in the Microstructure of Cognition Foundations . Boston, Mass: The MIT Press; 1986;1:472. 17. Wall M, Ketoff KM. Random dot motion perimetry in glaucoma patients and normal subjects . Am J Ophthalmol . 1996;120:587-596. 18. Wall M, Montgomery EB. Using motion perimetry to detect visual field defects in patients with idiopathic intracranial hypertension: a comparison with conventional automated perimetry . Neurology . 1995;45:1167-1175.Crossref 19. Nawrot M, Steinman SB. Real-time color-frame animation for visual psychophysics on the Macintosh computer . Behav Res Methods Instr Comput . 1994;24:439-452. 20. Fredericksen RE, Verstraten FA, van de Grind WA. Spatial summation and its interaction with the temporal integration mechanism in human motion perception . Vision Res . 1994;34:3171-3188.Crossref 21. Chauhan BC, House PH. Intratest variability in conventional and high-pass resolution perimetry . Ophthalmology . 1991;98:79-83.Crossref 22. Wall M, Lefante J, Conway M. Variability of high-pass resolution perimetry in normals and patients with idiopathic intracranial hypertension . Invest Ophthalmol Vis Sci . 1991;32:3091-3095. 23. van de Grind WA, Koenderink JJ, van Doom AJ, Milders MV, Voerman H. Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers . Vision Res . 1993;33:1089-1107.Crossref 24. House P, Schulzer M, Drance S, Douglas G. Characteristics of the normal central visual field measured with resolution perimetry . Graefes Arch Clin Exp Ophthalmol . 1991;229:8-12.Crossref 25. Wirtschafter JD, Becker WL, Howe JB, Younge BR. Glaucoma visual field analysis by computed profile of nerve fiber function in optic disc sectors . Ophthalmology . 1982;89:255-267.Crossref 26. Wall M, Conway MD, House PH, Allely R. Evaluation of sensitivity and specificity of spatial resolution and Humphrey automated perimetry in pseudotumor cerebri patients and normal subjects . Invest Ophthalmol Vis Sci . 1991;32:3306-3312. 27. Katz J, Sommer A, Gaasterland DE, Anderson DR. Comparison of analytic algorithms for detecting glaucomatous visual field loss . Arch Ophthalmol . 1991;109:1684-1689.Crossref 28. Asman P, Heijl A. Glaucoma hemifield test: automated visual field evaluation . Arch Ophthalmol . 1992;110:812-819.Crossref 29. Asman P, Heijl A. Evaluation of methods for automated hemifield analysis in perimetry . Arch Ophthalmol . 1992;110:820-826.Crossref 30. Silverman SE, Trick GL, Hart WM Jr. Motion perception is abnormal in primary open-angle glaucoma and ocular hypertension . Invest Ophthalmol Vis Sci . 1990;31:722-729. 31. Bullimore MA, Wood JM, Swenson K. Motion perception in glaucoma . Invest Ophthalmol Vis Sci . 1993;34:3526-3533. 32. Trick GL, Steinman SB, Amyot M. Motion perception deficits in glaucomatous optic neuropathy . Vision Res . 1995;35:2225-2233.Crossref 33. Johnson CA. Selective versus nonselective losses in glaucoma . J Glaucoma . 1994;3( (suppl) ):32-44. 34. Johnson CA, Marshall D, Eng KM. Displacement threshold perimetry in glaucoma using a Macintosh computer system and a 21-inch monitor . In: Mills RP, Wall M, eds. Perimetry Update 1994/1995 . Amsterdam, the Netherlands: Kugler Publications; 1995:103-110. 35. Ruben S, Fitzke F. Correlation of peripheral displacement thresholds and optic disc parameters in ocular hypertension . Br J Ophthalmol . 1994;78:291-294.Crossref 36. Sample PA, Taylor JDN, Martinez G, Lusky M, Weinreb RN. Short-wavelength color visual fields in glaucoma suspects at risk . Am J Ophthalmol . 1993;115:225-233. 37. Mateeff S, Gourevich A. Brief stimuli localization in visual periphery . Acta Physiol Pharmacol Bulg . 1984;10:64-71. 38. Aitsebaomo AP, Bedell HE. Psychophysical and saccadic information about direction for briefly presented visual targets . Vision Res . 1992;32:1729-1737.Crossref 39. Bartz AE. Eye-movement latency, duration, and response time as a function of angular displacement . J Exp Psychol . 1962;64:318-324.Crossref 40. Brito CF. Age-related Changes in the Detection and Classification of Motion in the Periphery of the Visual Field. Iowa City: University of Iowa; 1994. Thesis.

Journal

Archives of OphthalmologyAmerican Medical Association

Published: Jan 1, 1997

There are no references for this article.