Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Value of Magnetic Resonance Imaging-Based Measurements of Hippocampal Formations in Patients With Partial Epilepsy

Value of Magnetic Resonance Imaging-Based Measurements of Hippocampal Formations in Patients With... Abstract Objective: To determine the occurrence of magnetic resonance imaging-detected hippocampal atrophy (HA) in patients with partial epilepsy (temporal and extratemporal, cryptogenic, or symptomatic). Magnetic resonance imaging-detected HA has been demonstrated to be both sensitive and specific for hippocampal sclerosis in cryptogenic temporal lobe epilepsy. Design: Patients' hippocampal formations were measured on a computerized system using Tl-weighted, 5-mm contiguous magnetic resonance coronal images made perpendicular to the hippocampus long axis. Hippocampal atrophy was defined on the basis of a normative asymmetry index and correlated with the epileptogenic focus defined by clinical, electroencephalographic, and magnetic resonance imaging (apart from HA) localizing data. Patients and Control Subjects: Seventy patients with intractable complex partial seizures of temporal, extratemporal, or undefined origin and 21 healthy control subjects. Results: Hippocampal atrophy was present in 70% of patients with cryptogenic temporal lobe epilepsy (TLE) (n=40), 44% of patients with symptomatic TLE (n=9), 29% of patients with extratemporal epilepsy (n=14), and 6% of unclassified patients (n=16). In the cryptogenic TLE category, HA was marked and usually concordant (93%) with electroencephalographic lateralization. Hippocampal atrophy was often mild in the extratemporal epilepsy category. With the use of a wider confidence interval (±3.1 SD instead of ±2.2 SD), HA specificity for TLE increased to 93%, HA specificity for lateralizing cryptogenic TLE reached 96%, and HA sensitivity for cryptogenic TLE stood almost unchanged (68%). We found a link between early convulsions and HA occurrence. Conclusions: Hippocampal atrophy is a marker for TLE. Dual pathologic findings are detected in 44% of symptomatic TLE cases. Mild HA is rarely associated with extratemporal epilepsy. Magnetic resonance imaging-based hippocampal volumetric analysis is a useful method to localize the origin of partial complex seizures. References 1. Babb TL, Brown WJ. Pathological findings in epilepsy . In: Engel J Jr, ed. Surgical Treatment of the Epilepsies . New York, NY: Raven Press; 1987:511-552. 2. Jack CR, Sharbrough FW, Twoney MS, et al. Temporal lobe seizures: lateralization with MR volume measurements of the hippocampal formation . Radiology . 1990;175:423-429.Crossref 3. Berkovic SF, Andermann F, Olivier A, et al. Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging . Ann Neurol . 1991; 29:175-182.Crossref 4. Ashtari M, Barr WB, Schaul N, Bogerts B. Three-dimensional fast low-angle shot imaging and computerized volume measurement of the hippocampus in patients with chronic epilepsy of the temporal lobe . AJNR Am J Neuroradiol . 1991;12:941-947. 5. Cascino GD, Jack CR, Parisi JE, et al. Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations . Ann Neurol . 1991;30:31-36.Crossref 6. Bronen RA, Cheung G, Charles JT, et al. Imaging findings in hippocampal sclerosis: correlation with pathology . AJNR Am J Neuroradiol . 1991;12:933-940. 7. Jack CR, Sharbrough FW, Cascino GD, Hirschorn KA, O'Brien PC, Marsh WR. Magnetic resonance image-based hippocampal volumetry: correlation with outcome after temporal lobectomy . Ann Neurol . 1992;31:138-146.Crossref 8. Dam AM. Hippocampal neuron loss in epilepsy and after experimental seizures . Acta Neurol Scand . 1982;66:601-642.Crossref 9. Commission on classification and terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes . Epilepsia . 1989;30:389-399.Crossref 10. Engel J Jr. Outcome with respect to epileptic seizures . In: Engel J Jr, ed. Surgical Treatment of the Epilepsies . New York, NY: Raven Press; 1987:553-571. 11. Jack CR, Twomey CK, Zinsmeister PHD, Sharbrough FW, Peterson RC, Cascino GD. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults . Radiology . 1989;172: 549-554.Crossref 12. Bouchet J, Cazauvieilh T. De l'épilepsie considérée dans ses rapports avec l'aliénation mentale . Arch Gen Med . 1825;9:510-542. 13. Sommer W. Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie . Arch Psychiatr Nervenkr . 1880;10:631-675. 14. Stauder KH. Epilepsie und Schlafenlappe . Arch Psychiatr Nervenkr . 1936;104: 181-212. 15. Sano K, Malamud N. Clinical significance of sclerosis of the cornu ammonis . Arch Neurol Psychiatry . 1953;70:40-53.Crossref 16. Earle KM, Baldwin M, Penfield W. Incisural sclerosis and temporal lobe seizures produced by hippocampal herniation at birth . Arch Neurol Psychiatry . 1953;69:27-42.Crossref 17. Meyer A, Falconer MA, Beck E. Pathological findings in temporal lobe epilepsy . J Neurol Neurosurg Psychiatry . 1954;17:276-285.Crossref 18. Cavanagh JB, Meyer A. Etiological aspects of Ammon's horn sclerosis associated with temporal lobe epilepsy . BMJ . 1956;2:1403-1407.Crossref 19. Corsellis J. The incidence of Ammon's horn sclerosis . Brain . 1957;80:193-208.Crossref 20. Falconer MA, Serafetinides EA. A follow-up study of surgery in temporal lobe epilepsy . J Neurol Neurosurg Psychiatry . 1963;26:154-165.Crossref 21. Falconer MA, Serafetinides EA, Corsellis JAN. Etiology and pathogenesis of temporal lobe epilepsy . Arch Neurol . 1964;10:233-248.Crossref 22. Green JR, Scheetz DG. Surgery of epileptogenic lesions of the temporal lobe . Arch Neurol . 1964;10:135-148.Crossref 23. Margerison JH, Corsellis JAN. Epilepsy and the temporal lobes . Brain . 1966; 89:499-530.Crossref 24. Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH. Temporal lobe volumetric cell densities in temporal lobe eilepsy . Epilepsia . 1984;25:729-740.Crossref 25. Sagar HJ, Oxbury JM. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions . Ann Neurol . 1987;22:334-340.Crossref 26. Duncan JS, Sagar HJ. Seizure characteristics, pathology, and outcome after temporal lobectomy . Neurology . 1987;37:405-409.Crossref 27. Fobben ES, Zimmerman RA, Sperling MR, et al. MR imaging in temporal lobe epilepsy . Radiology . 1988;169P:142. 28. Engel J Jr, Driver MV, Falconer MA. Electrophysiological correlates of pathology and surgical results in temporal lobe epilepsy . Brain . 1975;98:129-156.Crossref 29. Engel J Jr, Rausch R, Lieb JP, Kuhl DE, Crandall PH. Correlation of criteria used for localizing epileptic foci in patients considered for surgical therapy of epilepsy . Ann Neurol . 1981;9:215-224.Crossref 30. Gastaut H, Toga M, Roger J, Gibson WC. A correlation of clinical, electroencephalographic and anatomical findings in nine autopsied cases of 'temporal lobe epilepsy.' Epilepsia . 1959;1:56-85.Crossref 31. Jackson GD, Berkovic SF, Tress BM, Kalnins RM, Fabinyi CA, Bladin PF. Hippocampal sclerosis can be reliably detected by magnetic resonance imaging . Neurology . 1990;40:1869-1875.Crossref 32. Green JR, Duisberg REH, McGrath WB. Focal epilepsy of psychomotor type . J Neurosurg . 1951;8:157-172.Crossref 33. Babb TL, Lieb JP, Brown WJ, Pretorius J, Crandall PH. Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation . Epilepsia . 1984;25:721-728.Crossref 34. Awad IA, Katz A, Hahn JF, Kong AK, Ahl J, Luders H. Extent of resection in temporal lobectomy for epilepsy, I: interobserver analysis and correlation with seizure outcome . Epilepsia . 1989;30:756-762.Crossref 35. Pampiglione G, Falconer A. Stimulation of the hippocampus in man . EEG Clin Neurophysiol . 1956;8:718. 36. Van Buren JM. Sensory, motor and autonomic effects of mesial temporal stimulation in man . J Neurosurg . 1961;18:273-288.Crossref 37. Bancaud J, Talairach J, Bresson M, Morel P. Accès épileptiques induits par stimulation du noyau amygdalien et de la corne d'Ammon (intérêt de la stimulation dans la détermination des épilepsies temporales chez l'homme) . Rev Neurol . 1968;118:527-532. 38. Halgren E, Walter RD, Cherlow DG, Crandall PH. Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala . Brain . 1978;101:83-117.Crossref 39. Gloor P, Olivier A, Andermann F, Horowitz S. The role of the limbic system in experiential phenomena of temporal lobe epilepsy . Ann Neurol . 1982;12:129-144.Crossref 40. Green JD, Clemente CD, De Groot J. Experimentally induced epilepsy in the cat with injury of cornu ammonis . Arch Neurol Psychiatry . 1957;78:259-263.Crossref 41. Gastaut H, Meyer A, Naquet R, Cavanagh JB, Beck E. Experimental psychomotor epilepsy in the cat: electro-clinical and anatomo-pathological correlations . J Neuropathol Exp Neurol . 1959;18:270-293.Crossref 42. Leifer D, Cole DG, Kowall NW. Neuropathologic asymmetries in the brain of a patient with a unilateral status epilepticus . J Neurol Sci . 1991;103:127-135.Crossref 43. Falconer MA. Genetic and related etiological factors in temporal lobe epilepsy . Epilepsia . 1971;12:13-31.Crossref 44. Falconer MA. Mesial temporal (Ammon's horn) sclerosis as a common cause of epilepsy etiology, treatment, and prevention . Lancet . 1974;2:767-770.Crossref 45. Aicardi J, Chevrie JJ. Convulsive status epilepticus in infants and children . Epilepsia . 1970;11:187-197.Crossref 46. Taylor DC, Ounsted C. Age, sex, and hemispheric vulnerability in the outcome of seizures in response to fever . Clin Dev Med . 1971;39-40:266-273. 47. Bertram EH, Loyhman EW, Lenn NJ. The hippocampus in experimental chronic epilepsy: a morphometric analysis . Ann Neurol . 1990;27:43-48.Crossref 48. Lee K, Diaz M, Melchior JC. Temporal lobe epilepsy: not a consequence of childhood febrile convulsions in Denmark . Acta Neurol Scand . 1981;63:231-236.Crossref 49. Lindenberg R. Compression of brain arteries as pathogenetic factor for tissue necroses and their areas of predilection . J Neuropathol Exp Neurol . 1955;14: 223-243.Crossref 50. Penfield W. Epileptogenic lesions . Acta Neurol Psychiatry Belg . 1956;56:75-88. 51. Gastaut H. Etat actuel des connaissances sur l'anatomie pathologique des épilepsies . Acta Neurol Psychiatry Belg . 1956;56:5-20. 52. Dam AM. Neuropathology of hippocampus in epilepsy . Adv Epileptol . 1987;16: 9-14. 53. Maheshwari MC. Forceps delivery as a risk factor in epilepsy: a comparative prospective cohort survey . Acta Neurol Scand . 1990;81:522-523.Crossref http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Neurology American Medical Association

Value of Magnetic Resonance Imaging-Based Measurements of Hippocampal Formations in Patients With Partial Epilepsy

Loading next page...
 
/lp/american-medical-association/value-of-magnetic-resonance-imaging-based-measurements-of-hippocampal-mJ46PdEOTB

References (59)

Publisher
American Medical Association
Copyright
Copyright © 1994 American Medical Association. All Rights Reserved.
ISSN
0003-9942
eISSN
1538-3687
DOI
10.1001/archneur.1994.00540140036012
Publisher site
See Article on Publisher Site

Abstract

Abstract Objective: To determine the occurrence of magnetic resonance imaging-detected hippocampal atrophy (HA) in patients with partial epilepsy (temporal and extratemporal, cryptogenic, or symptomatic). Magnetic resonance imaging-detected HA has been demonstrated to be both sensitive and specific for hippocampal sclerosis in cryptogenic temporal lobe epilepsy. Design: Patients' hippocampal formations were measured on a computerized system using Tl-weighted, 5-mm contiguous magnetic resonance coronal images made perpendicular to the hippocampus long axis. Hippocampal atrophy was defined on the basis of a normative asymmetry index and correlated with the epileptogenic focus defined by clinical, electroencephalographic, and magnetic resonance imaging (apart from HA) localizing data. Patients and Control Subjects: Seventy patients with intractable complex partial seizures of temporal, extratemporal, or undefined origin and 21 healthy control subjects. Results: Hippocampal atrophy was present in 70% of patients with cryptogenic temporal lobe epilepsy (TLE) (n=40), 44% of patients with symptomatic TLE (n=9), 29% of patients with extratemporal epilepsy (n=14), and 6% of unclassified patients (n=16). In the cryptogenic TLE category, HA was marked and usually concordant (93%) with electroencephalographic lateralization. Hippocampal atrophy was often mild in the extratemporal epilepsy category. With the use of a wider confidence interval (±3.1 SD instead of ±2.2 SD), HA specificity for TLE increased to 93%, HA specificity for lateralizing cryptogenic TLE reached 96%, and HA sensitivity for cryptogenic TLE stood almost unchanged (68%). We found a link between early convulsions and HA occurrence. Conclusions: Hippocampal atrophy is a marker for TLE. Dual pathologic findings are detected in 44% of symptomatic TLE cases. Mild HA is rarely associated with extratemporal epilepsy. Magnetic resonance imaging-based hippocampal volumetric analysis is a useful method to localize the origin of partial complex seizures. References 1. Babb TL, Brown WJ. Pathological findings in epilepsy . In: Engel J Jr, ed. Surgical Treatment of the Epilepsies . New York, NY: Raven Press; 1987:511-552. 2. Jack CR, Sharbrough FW, Twoney MS, et al. Temporal lobe seizures: lateralization with MR volume measurements of the hippocampal formation . Radiology . 1990;175:423-429.Crossref 3. Berkovic SF, Andermann F, Olivier A, et al. Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging . Ann Neurol . 1991; 29:175-182.Crossref 4. Ashtari M, Barr WB, Schaul N, Bogerts B. Three-dimensional fast low-angle shot imaging and computerized volume measurement of the hippocampus in patients with chronic epilepsy of the temporal lobe . AJNR Am J Neuroradiol . 1991;12:941-947. 5. Cascino GD, Jack CR, Parisi JE, et al. Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations . Ann Neurol . 1991;30:31-36.Crossref 6. Bronen RA, Cheung G, Charles JT, et al. Imaging findings in hippocampal sclerosis: correlation with pathology . AJNR Am J Neuroradiol . 1991;12:933-940. 7. Jack CR, Sharbrough FW, Cascino GD, Hirschorn KA, O'Brien PC, Marsh WR. Magnetic resonance image-based hippocampal volumetry: correlation with outcome after temporal lobectomy . Ann Neurol . 1992;31:138-146.Crossref 8. Dam AM. Hippocampal neuron loss in epilepsy and after experimental seizures . Acta Neurol Scand . 1982;66:601-642.Crossref 9. Commission on classification and terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes . Epilepsia . 1989;30:389-399.Crossref 10. Engel J Jr. Outcome with respect to epileptic seizures . In: Engel J Jr, ed. Surgical Treatment of the Epilepsies . New York, NY: Raven Press; 1987:553-571. 11. Jack CR, Twomey CK, Zinsmeister PHD, Sharbrough FW, Peterson RC, Cascino GD. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults . Radiology . 1989;172: 549-554.Crossref 12. Bouchet J, Cazauvieilh T. De l'épilepsie considérée dans ses rapports avec l'aliénation mentale . Arch Gen Med . 1825;9:510-542. 13. Sommer W. Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie . Arch Psychiatr Nervenkr . 1880;10:631-675. 14. Stauder KH. Epilepsie und Schlafenlappe . Arch Psychiatr Nervenkr . 1936;104: 181-212. 15. Sano K, Malamud N. Clinical significance of sclerosis of the cornu ammonis . Arch Neurol Psychiatry . 1953;70:40-53.Crossref 16. Earle KM, Baldwin M, Penfield W. Incisural sclerosis and temporal lobe seizures produced by hippocampal herniation at birth . Arch Neurol Psychiatry . 1953;69:27-42.Crossref 17. Meyer A, Falconer MA, Beck E. Pathological findings in temporal lobe epilepsy . J Neurol Neurosurg Psychiatry . 1954;17:276-285.Crossref 18. Cavanagh JB, Meyer A. Etiological aspects of Ammon's horn sclerosis associated with temporal lobe epilepsy . BMJ . 1956;2:1403-1407.Crossref 19. Corsellis J. The incidence of Ammon's horn sclerosis . Brain . 1957;80:193-208.Crossref 20. Falconer MA, Serafetinides EA. A follow-up study of surgery in temporal lobe epilepsy . J Neurol Neurosurg Psychiatry . 1963;26:154-165.Crossref 21. Falconer MA, Serafetinides EA, Corsellis JAN. Etiology and pathogenesis of temporal lobe epilepsy . Arch Neurol . 1964;10:233-248.Crossref 22. Green JR, Scheetz DG. Surgery of epileptogenic lesions of the temporal lobe . Arch Neurol . 1964;10:135-148.Crossref 23. Margerison JH, Corsellis JAN. Epilepsy and the temporal lobes . Brain . 1966; 89:499-530.Crossref 24. Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH. Temporal lobe volumetric cell densities in temporal lobe eilepsy . Epilepsia . 1984;25:729-740.Crossref 25. Sagar HJ, Oxbury JM. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions . Ann Neurol . 1987;22:334-340.Crossref 26. Duncan JS, Sagar HJ. Seizure characteristics, pathology, and outcome after temporal lobectomy . Neurology . 1987;37:405-409.Crossref 27. Fobben ES, Zimmerman RA, Sperling MR, et al. MR imaging in temporal lobe epilepsy . Radiology . 1988;169P:142. 28. Engel J Jr, Driver MV, Falconer MA. Electrophysiological correlates of pathology and surgical results in temporal lobe epilepsy . Brain . 1975;98:129-156.Crossref 29. Engel J Jr, Rausch R, Lieb JP, Kuhl DE, Crandall PH. Correlation of criteria used for localizing epileptic foci in patients considered for surgical therapy of epilepsy . Ann Neurol . 1981;9:215-224.Crossref 30. Gastaut H, Toga M, Roger J, Gibson WC. A correlation of clinical, electroencephalographic and anatomical findings in nine autopsied cases of 'temporal lobe epilepsy.' Epilepsia . 1959;1:56-85.Crossref 31. Jackson GD, Berkovic SF, Tress BM, Kalnins RM, Fabinyi CA, Bladin PF. Hippocampal sclerosis can be reliably detected by magnetic resonance imaging . Neurology . 1990;40:1869-1875.Crossref 32. Green JR, Duisberg REH, McGrath WB. Focal epilepsy of psychomotor type . J Neurosurg . 1951;8:157-172.Crossref 33. Babb TL, Lieb JP, Brown WJ, Pretorius J, Crandall PH. Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation . Epilepsia . 1984;25:721-728.Crossref 34. Awad IA, Katz A, Hahn JF, Kong AK, Ahl J, Luders H. Extent of resection in temporal lobectomy for epilepsy, I: interobserver analysis and correlation with seizure outcome . Epilepsia . 1989;30:756-762.Crossref 35. Pampiglione G, Falconer A. Stimulation of the hippocampus in man . EEG Clin Neurophysiol . 1956;8:718. 36. Van Buren JM. Sensory, motor and autonomic effects of mesial temporal stimulation in man . J Neurosurg . 1961;18:273-288.Crossref 37. Bancaud J, Talairach J, Bresson M, Morel P. Accès épileptiques induits par stimulation du noyau amygdalien et de la corne d'Ammon (intérêt de la stimulation dans la détermination des épilepsies temporales chez l'homme) . Rev Neurol . 1968;118:527-532. 38. Halgren E, Walter RD, Cherlow DG, Crandall PH. Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala . Brain . 1978;101:83-117.Crossref 39. Gloor P, Olivier A, Andermann F, Horowitz S. The role of the limbic system in experiential phenomena of temporal lobe epilepsy . Ann Neurol . 1982;12:129-144.Crossref 40. Green JD, Clemente CD, De Groot J. Experimentally induced epilepsy in the cat with injury of cornu ammonis . Arch Neurol Psychiatry . 1957;78:259-263.Crossref 41. Gastaut H, Meyer A, Naquet R, Cavanagh JB, Beck E. Experimental psychomotor epilepsy in the cat: electro-clinical and anatomo-pathological correlations . J Neuropathol Exp Neurol . 1959;18:270-293.Crossref 42. Leifer D, Cole DG, Kowall NW. Neuropathologic asymmetries in the brain of a patient with a unilateral status epilepticus . J Neurol Sci . 1991;103:127-135.Crossref 43. Falconer MA. Genetic and related etiological factors in temporal lobe epilepsy . Epilepsia . 1971;12:13-31.Crossref 44. Falconer MA. Mesial temporal (Ammon's horn) sclerosis as a common cause of epilepsy etiology, treatment, and prevention . Lancet . 1974;2:767-770.Crossref 45. Aicardi J, Chevrie JJ. Convulsive status epilepticus in infants and children . Epilepsia . 1970;11:187-197.Crossref 46. Taylor DC, Ounsted C. Age, sex, and hemispheric vulnerability in the outcome of seizures in response to fever . Clin Dev Med . 1971;39-40:266-273. 47. Bertram EH, Loyhman EW, Lenn NJ. The hippocampus in experimental chronic epilepsy: a morphometric analysis . Ann Neurol . 1990;27:43-48.Crossref 48. Lee K, Diaz M, Melchior JC. Temporal lobe epilepsy: not a consequence of childhood febrile convulsions in Denmark . Acta Neurol Scand . 1981;63:231-236.Crossref 49. Lindenberg R. Compression of brain arteries as pathogenetic factor for tissue necroses and their areas of predilection . J Neuropathol Exp Neurol . 1955;14: 223-243.Crossref 50. Penfield W. Epileptogenic lesions . Acta Neurol Psychiatry Belg . 1956;56:75-88. 51. Gastaut H. Etat actuel des connaissances sur l'anatomie pathologique des épilepsies . Acta Neurol Psychiatry Belg . 1956;56:5-20. 52. Dam AM. Neuropathology of hippocampus in epilepsy . Adv Epileptol . 1987;16: 9-14. 53. Maheshwari MC. Forceps delivery as a risk factor in epilepsy: a comparative prospective cohort survey . Acta Neurol Scand . 1990;81:522-523.Crossref

Journal

Archives of NeurologyAmerican Medical Association

Published: Feb 1, 1994

There are no references for this article.