Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Callosal Atrophy Parallels Decreased Cortical Oxygen Metabolism and Neuropsychological Impairment in Alzheimer's Disease

Callosal Atrophy Parallels Decreased Cortical Oxygen Metabolism and Neuropsychological Impairment... Abstract • Objective. —To evaluate the relationship of corpus callosum atrophy to cerebral cortical oxygen metabolism and cognitive function in patients with Alzheimer's disease. Design. —Prospective clinicoradiologic correlation with magnetic resonance imaging and positron emission tomography. Setting. —A university hospital. Patients, Participants. —Ten right-handed male patients with Alzheimer's disease, aged 46 to 70 years (mean±SD 57±6 years), and 14 age- and sex-matched right-handed control subjects. Main Outcome Measures. —The midsagittal corpus callosum areas (on T1-weighted magnetic resonance images), cerebral metabolic rate of oxygen (measured with positron emission tomography using the oxygen-15 steady-state technique), and the IQs of the Wechsler Adult Intelligence Scale. Results. —Compared with control subjects, the patients had significantly decreased callosal areas with a posterior predominance of the degree of atrophy. The area of anterior and posterior halves of the corpus callosum had a significant correlation with the value of oxygen metabolism in the frontal and parietotemporo-occipital association cortices, respectively. The total area of the corpus callosum was significantly related to the total and verbal IQs of the Wechsler Adult Intelligence Scale. Conclusion. —Atrophy of corpus callosum reflects the severity and pattern of cortical damage associated with hypometabolism and cognitive impairment in Alzheimer's disease. References 1. Creasey H, Luxenberg J, Schapiro M, Haxby JV, Rapoport SI. Computed tomography and study of the anatomical changes in Alzheimer's disease . In: Rapoport SI, Henri P, Didi L, Yves C, eds. Imaging, Cerebral Tomography and Alzheimer's Disease . Berlin, Germany: Springer-Verlag; 1990:69-83. 2. Drayer BP. Imaging of the aging brain, II: pathologic conditions . Radiology . 1988;166:797-806.Crossref 3. Lewis DA, Campbell MJ, Terry RD, Morrison JH. Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer's disease: a quantitative study of visual and auditory cortices . J Neurosci . 1987;7:1799-1808. 4. Innocenti GM. General organization of callosal connections in the cerebral cortex . In: Jones EG, Peters A, eds. Cerebral Cortex . 5th ed. New York, NY: Plenum Press; 1986:291-353. 5. McKhann G, Drachman D, Flostein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease . Neurology . 1984;34:939-944.Crossref 6. Pearce JMS. Dementia: A Clinical Approach . Boston, Mass: Blackwell Scientific Publications Inc; 1984:27-31. 7. Hasegawa K, Inoue K, Moriya K. An investigation of dementia rating scale for the elderly (in Japanese) . Seisin Igaku . 1974;16:965-969. 8. Wechsler DA. Wechsler Adult Intelligence Scale . New York, NY: Psychological Corp; 1955. 9. de Lacoste MC, Kirkpatrik JB, Ross ED. Topography of human corpus callosum . J Neuropathol Exp Neurol . 1985;44:578-591.Crossref 10. Pandya DN, Karol EA, Heilbronn D. The topographical distribution of interhemispheric projections in the corpus callosum of rhesus monkey . Brain Res . 1971;32:31-43.Crossref 11. Nabatame H, Fukuyama H, Akiguchi I, Kameyama M, Nishimura K, Nakano K. Spinocerebellar degeneration: qualitative and quantitative MR analysis of atrophy . J Comput Assist Tomogr . 1988;12:298-303.Crossref 12. Senda M, Tamaki N, Yonekura Y, et al. Performance characteristics of Positlogica III: a whole-body positron emission tomograph . J Comput Assist Tomogr . 1985;9:940-946.Crossref 13. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: theory, procedure, and normal values . J Comput Assist Tomogr . 1980;4:727-736.Crossref 14. Lammertsma AA, Jones T. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain, I: description of the method . J Cereb Blood Flow Metab . 1983;3:416-424.Crossref 15. Yamauchi H, Fukuyama H, Harada K, et al. White matter hyperintensities may correspond to areas of increased blood volume: correlative MR and PET observations . J Comput Assist Tomogr . 1990;14:905-908.Crossref 16. Kretschmann HJ, Weinrich W. Neuroanatomy and Cranial Computed Tomography . New York, NY: Thieme-Stratton Inc; 1986:70-74. 17. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging . AJNR Am J Neuroradiol . 1987;8:421-426. 18. Brun A, Englund E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study . Ann Neurol . 1986;19:253-262.Crossref 19. Leys D, Pruvo JP, Parent M, et al. Could wallerian degeneration contribute to 'leuko-araiosis' in subjects free of any vascular disorder? J Neurol Neurosurg Psychiatry . 1991;54:46-50.Crossref 20. Pozzili C, Fieschi C, Perani D, et al. Cerebral metabolic asymmetry and corpus callosum atrophy in multiple sclerosis . J Cereb Blood Flow Metab . 1991;1 1( (suppl 2) ):S827. Abstract. 21. Yamaguchi T, Kurimoto M, Pappata S, et al. Effects of anterior corpus callosum section on cortical glucose utilization in baboons . Brain . 1990; 113:937-951.Crossref 22. Haxby JV, Grady CL, Koss E, et al. Heterogeneous anterior-posterior metabolic patterns in dementia of the Alzheimer type . Neurology . 1988;38: 1853-1863.Crossref 23. Yoshii F, Duara R. Size of corpus callosum in normal subjects and patients with Alzheimer's disease: magnetic resonance imaging study (in Japanese) . Clin Neurol (Tokyo) . 1989;29:1-7. 24. Biegon A, Eberling JL, Reed BR, Richardson BC, Jagust WJ. Quantitative MRI of the corpus callosum in aging and Alzheimer's disease . Neurology . 1992;42( (suppl 3) ):277. Abstract. 25. Rapoport SI. Positron emission tomography in Alzheimer's disease in relation to disease pathogenesis: a critical review . Cerebrovasc Brain Metab Rev . 1991;3:297-355. 26. Wang PP, Doherty S, Hesselink JR, Bellugi U. Callosal morphology concurs with neurobehavial and neuropathological findings in two neurodevelopmental disorders . Arch Neurol . 1992;49:407-411.Crossref 27. Foster NL, Chase TN, Fedio P, Patronas NL, Brooks RA, Di Chiro G. Alzheimer's disease: focal cortical changes shown by positron emission tomography . Neurology . 1983;33:961-965.Crossref 28. Fukuyama H, Harada K, Yamauchi H, et al. Coronal reconstruction images of glucose metabolism in Alzheimer's disease . J Neurol Sci . 1991; 106:128-134.Crossref http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Neurology American Medical Association

Callosal Atrophy Parallels Decreased Cortical Oxygen Metabolism and Neuropsychological Impairment in Alzheimer's Disease

Loading next page...
 
/lp/american-medical-association/callosal-atrophy-parallels-decreased-cortical-oxygen-metabolism-and-zrvgAodO14

References (33)

Publisher
American Medical Association
Copyright
Copyright © 1993 American Medical Association. All Rights Reserved.
ISSN
0003-9942
eISSN
1538-3687
DOI
10.1001/archneur.1993.00540100061017
Publisher site
See Article on Publisher Site

Abstract

Abstract • Objective. —To evaluate the relationship of corpus callosum atrophy to cerebral cortical oxygen metabolism and cognitive function in patients with Alzheimer's disease. Design. —Prospective clinicoradiologic correlation with magnetic resonance imaging and positron emission tomography. Setting. —A university hospital. Patients, Participants. —Ten right-handed male patients with Alzheimer's disease, aged 46 to 70 years (mean±SD 57±6 years), and 14 age- and sex-matched right-handed control subjects. Main Outcome Measures. —The midsagittal corpus callosum areas (on T1-weighted magnetic resonance images), cerebral metabolic rate of oxygen (measured with positron emission tomography using the oxygen-15 steady-state technique), and the IQs of the Wechsler Adult Intelligence Scale. Results. —Compared with control subjects, the patients had significantly decreased callosal areas with a posterior predominance of the degree of atrophy. The area of anterior and posterior halves of the corpus callosum had a significant correlation with the value of oxygen metabolism in the frontal and parietotemporo-occipital association cortices, respectively. The total area of the corpus callosum was significantly related to the total and verbal IQs of the Wechsler Adult Intelligence Scale. Conclusion. —Atrophy of corpus callosum reflects the severity and pattern of cortical damage associated with hypometabolism and cognitive impairment in Alzheimer's disease. References 1. Creasey H, Luxenberg J, Schapiro M, Haxby JV, Rapoport SI. Computed tomography and study of the anatomical changes in Alzheimer's disease . In: Rapoport SI, Henri P, Didi L, Yves C, eds. Imaging, Cerebral Tomography and Alzheimer's Disease . Berlin, Germany: Springer-Verlag; 1990:69-83. 2. Drayer BP. Imaging of the aging brain, II: pathologic conditions . Radiology . 1988;166:797-806.Crossref 3. Lewis DA, Campbell MJ, Terry RD, Morrison JH. Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer's disease: a quantitative study of visual and auditory cortices . J Neurosci . 1987;7:1799-1808. 4. Innocenti GM. General organization of callosal connections in the cerebral cortex . In: Jones EG, Peters A, eds. Cerebral Cortex . 5th ed. New York, NY: Plenum Press; 1986:291-353. 5. McKhann G, Drachman D, Flostein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease . Neurology . 1984;34:939-944.Crossref 6. Pearce JMS. Dementia: A Clinical Approach . Boston, Mass: Blackwell Scientific Publications Inc; 1984:27-31. 7. Hasegawa K, Inoue K, Moriya K. An investigation of dementia rating scale for the elderly (in Japanese) . Seisin Igaku . 1974;16:965-969. 8. Wechsler DA. Wechsler Adult Intelligence Scale . New York, NY: Psychological Corp; 1955. 9. de Lacoste MC, Kirkpatrik JB, Ross ED. Topography of human corpus callosum . J Neuropathol Exp Neurol . 1985;44:578-591.Crossref 10. Pandya DN, Karol EA, Heilbronn D. The topographical distribution of interhemispheric projections in the corpus callosum of rhesus monkey . Brain Res . 1971;32:31-43.Crossref 11. Nabatame H, Fukuyama H, Akiguchi I, Kameyama M, Nishimura K, Nakano K. Spinocerebellar degeneration: qualitative and quantitative MR analysis of atrophy . J Comput Assist Tomogr . 1988;12:298-303.Crossref 12. Senda M, Tamaki N, Yonekura Y, et al. Performance characteristics of Positlogica III: a whole-body positron emission tomograph . J Comput Assist Tomogr . 1985;9:940-946.Crossref 13. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: theory, procedure, and normal values . J Comput Assist Tomogr . 1980;4:727-736.Crossref 14. Lammertsma AA, Jones T. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain, I: description of the method . J Cereb Blood Flow Metab . 1983;3:416-424.Crossref 15. Yamauchi H, Fukuyama H, Harada K, et al. White matter hyperintensities may correspond to areas of increased blood volume: correlative MR and PET observations . J Comput Assist Tomogr . 1990;14:905-908.Crossref 16. Kretschmann HJ, Weinrich W. Neuroanatomy and Cranial Computed Tomography . New York, NY: Thieme-Stratton Inc; 1986:70-74. 17. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging . AJNR Am J Neuroradiol . 1987;8:421-426. 18. Brun A, Englund E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study . Ann Neurol . 1986;19:253-262.Crossref 19. Leys D, Pruvo JP, Parent M, et al. Could wallerian degeneration contribute to 'leuko-araiosis' in subjects free of any vascular disorder? J Neurol Neurosurg Psychiatry . 1991;54:46-50.Crossref 20. Pozzili C, Fieschi C, Perani D, et al. Cerebral metabolic asymmetry and corpus callosum atrophy in multiple sclerosis . J Cereb Blood Flow Metab . 1991;1 1( (suppl 2) ):S827. Abstract. 21. Yamaguchi T, Kurimoto M, Pappata S, et al. Effects of anterior corpus callosum section on cortical glucose utilization in baboons . Brain . 1990; 113:937-951.Crossref 22. Haxby JV, Grady CL, Koss E, et al. Heterogeneous anterior-posterior metabolic patterns in dementia of the Alzheimer type . Neurology . 1988;38: 1853-1863.Crossref 23. Yoshii F, Duara R. Size of corpus callosum in normal subjects and patients with Alzheimer's disease: magnetic resonance imaging study (in Japanese) . Clin Neurol (Tokyo) . 1989;29:1-7. 24. Biegon A, Eberling JL, Reed BR, Richardson BC, Jagust WJ. Quantitative MRI of the corpus callosum in aging and Alzheimer's disease . Neurology . 1992;42( (suppl 3) ):277. Abstract. 25. Rapoport SI. Positron emission tomography in Alzheimer's disease in relation to disease pathogenesis: a critical review . Cerebrovasc Brain Metab Rev . 1991;3:297-355. 26. Wang PP, Doherty S, Hesselink JR, Bellugi U. Callosal morphology concurs with neurobehavial and neuropathological findings in two neurodevelopmental disorders . Arch Neurol . 1992;49:407-411.Crossref 27. Foster NL, Chase TN, Fedio P, Patronas NL, Brooks RA, Di Chiro G. Alzheimer's disease: focal cortical changes shown by positron emission tomography . Neurology . 1983;33:961-965.Crossref 28. Fukuyama H, Harada K, Yamauchi H, et al. Coronal reconstruction images of glucose metabolism in Alzheimer's disease . J Neurol Sci . 1991; 106:128-134.Crossref

Journal

Archives of NeurologyAmerican Medical Association

Published: Oct 1, 1993

There are no references for this article.