Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

N-Methyl-d-Aspartate Antagonists in the Treatment of Parkinson's Disease

N-Methyl-d-Aspartate Antagonists in the Treatment of Parkinson's Disease Abstract • Current long-term treatment of Parkinson's disease is inadequate, and improved symptomatic and neuroprotective therapies are needed. Recent interest has focused on the use of antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor in Parkinson's disease. Abnormally increased activity of the subthalamic nucleus is postulated to play a central pathophysiological role in the signs of Parkinson's disease, and NMDA antagonists may provide a means of decreasing this activity selectively. Like dopaminergic agonists, NMDA antagonists can reverse the akinesia and rigidity associated with monoamine depletion or neuroleptic-induced catalepsy. Very low doses of NMDA antagonists markedly potentiate the therapeutic effects of dopaminergic agonists. There is evidence that the beneficial effects of anticholinergic drugs and amantadine may be mediated, in part, by NMDA receptor blockade. Moreover, NMDA antagonists provide profound protection of dopaminergic neurons of the substantia nigra in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and methamphetamine models of Parkinson's disease. The clinical use of NMDA antagonists may prove useful in Parkinson's disease to treat symptoms and retard disease progression. References 1. Cedarbaum JM. Pharmacokinetic and pharmacodynamic considerations in management of motor response fluctuations in Parkinson's disease . Neurol Clin . 1990;8:31-49. 2. Kurlan R. Practical therapy of Parkinson's disease . Semin Neurol . 1987;7:160-166.Crossref 3. Comella CL, Tanner CM. Anticholinergic drugs in the treatment of Parkinson's disease . In: Koller WC, Paulson G, eds. Therapy of Parkinson's Disease . New York, NY: Marcel Dekker Inc; 1990:123-141. 4. Cotzias GC, VanWoert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism . N Engl J Med . 1967;276:374-379.Crossref 5. Ehringer H, Hornykiewicz O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems . Klin Wochenschr . 1960;38:1236-1239.Crossref 6. Jankovic J, Marsden CD. Therapeutic strategies in Parkinson's disease . In: Jankovic J, Tolosa E, eds. Parkinson's Disease and Movement Disorders . Baltimore, Md: Urban & Schwarzenberg; 1988:95-119. 7. Parkinson Study Group. DATATOP: a multi-center controlled clinical trial in early Parkinson's disease . N Engl J Med . 1989;46:1052-1060. 8. Miller WC, DeLong MR. Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism . In: Carpenter MB, Jayarman A, eds. The Basal Ganglia II . New York, NY: Plenum Press; 1987:415-427. 9. Pan HS, Walters JR. Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat . Synapse . 1988;2:650-659.Crossref 10. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders . Trends Neurosci . 1989;12:366-375.Crossref 11. Klockgether T, Turski L. Excitatory amino acids and the basal ganglia: implications for the therapy of Parkinson's disease . Trends Neurosci . 1989;12:285-286.Crossref 12. Mitchell IJ, Clarke CE, Boyce S, Robertson RG, et al. Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine . Neuroscience . 1989;32:213-226.Crossref 13. Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus . Science . 1990;249:1436-1438.Crossref 14. Albin RL, Aldridge JW, Young AB, Gilman S. Feline subthalamic nucleus neurons contain glutamate-like but not GABA-like or glycine-like immunoreactivity . Brain Res . 1989;491:185-188.Crossref 15. Smith Y, Parent A. Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity . Brain Res . 1988;453:353-356.Crossref 16. Watkins JC, Evans RH. Excitatory amino acid transmitters . Annu Rev Pharmacol Toxicol . 1981;21:165-204.Crossref 17. Dingledine R, Boland LM, Chamberlin NL, et al. Amino acid receptors and uptake systems in the mammalian central nervous system . Crit Rev Neurobiol . 1988;4:1-96. 18. Albin RL, Makowiec RL, Hollingsworth Z, et al. Excitatory amino acid receptors in rat basal ganglia . Soc Neurosci Abstr . 1990;16:1233. Abstract. 19. Klockgether T, Turski L. NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats . Ann Neurol . 1990;28:539-546.Crossref 20. Afsharpour S. Topographical projections of the cerebral cortex to the subthalamic nucleus . J Comp Neurol . 1985;236:14-28.Crossref 21. Nakanishi H, Kita H, Kitai ST. An N-methyl-D-aspartate receptor mediated excitatory postsynaptic potential evoked in subthalamic neurons in an in vitro slice preparation of the rat . Neurosci Lett . 1988;95:130-136.Crossref 22. Carlsson M, Carlsson A. The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice . J Neural Transm . 1989;75:221-226.Crossref 23. Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson's disease . Trends Neurosci . 1990;13:272-276.Crossref 24. Crossman AR, Peggs D, Boyce S, et al. Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey . Neuropharmacology . 1989;28:1271-1273.Crossref 25. Kebabian JW, Calne DB. Multiple receptors for dopamine . Nature . 1979;277:93-96.Crossref 26. Nairn AC, Hemmings HC Jr, Greengard P. Protein kinases in the brain . Annu Rev Biochem . 1985;54:931-976.Crossref 27. Ouimet CC, Miller PE, Hemmings HC Jr, et al. DARPP-32, a dopamine and adenosine 3′,5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions, III: immunocytochemical localization . J Neurosci . 1984;4:111-124. 28. Hemmings HC Jr, Greengard P, Tung HYL, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1 . Nature . 1984;310:503-505.Crossref 29. Halpain S, Girault J-A, Greengard P. Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices . Nature . 1990;343:369-372.Crossref 30. Girault J-A, Halpain S, Greengard P. Excitatory amino acid antagonists and Parkinson's disease . Trends Neurosci . 1990;13:325-326.Crossref 31. Schmidt WJ, Bubser M, Hauber W. Excitatory amino acids and Parkinson's disease . Trends Neurosci . 1990;13:46-47.Crossref 32. Schmidt WJ, Bubser M. Anticataleptic effects of the N-methyl-D-aspartate antagonist MK-801 in rats . Pharmacol Biochem Behav . 1989;32:621-623.Crossref 33. Gruen RJ, Roth RH, Bunney BS, Moghaddam B. Increase in striatal dopamine release following local perfusion of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid . Soc Neurosci Abstr . 1990;16:679. Abstract. 34. Bennett JP Jr, Leslie CA. NMDA receptors modulate striatal dopamine release and metabolism in vivo: a microdialysis study . Soc Neurosci Abstr . 1990;16:679. Abstract. 35. Imperato A, Jensen LH, Alivernini L, et al. The effect of selective agonists and antagonists of excitatory amino acid receptors on dopaminergic and cholinergic neurotransmission in awake rats: possible clinical implications . Soc Neurosci Abstr . 1990;16:679. Abstract. 36. Duvoisin RC. Cholinergic-anticholinergic antagonism in parkinsonism . Arch Neurol . 1967;17:124-136.Crossref 37. Burke RE, Fahn S. Serum trihexyphenidyl levels in the treatment of torsion dystonia . Neurology . 1985;35:1066-1069.Crossref 38. Burke RE, Fahn S. Pharmacokinetics of trihexyphenidyl after short-term and long-term administration to dystonic patients . Ann Neurol . 1985;18:35-40.Crossref 39. Burke RE. The relative selectivity of anticholinergic drugs for the Ml and M2 muscarinic subtypes . Mov Disord . 1986;1:135-144.Crossref 40. Olney JW, Price MT, Labruyere J, et al. Anti-parkinsonian agents are phencyclidine agonists and N-methyl-D-asparate antagonists . Eur J Pharmacol . 1987;142:319-320.Crossref 41. Bormann J. Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels . Eur J Pharmacol . 1989;166:591-592.Crossref 42. Kornhuber J, Bormann J, Retz W, et al. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex . Eur J Pharmacol . 1989;166:589-590.Crossref 43. Quirion R, Pert CB. Amantadine modulates phencyclidine binding site sensitivity in rat brain . Experientia . 1982;38:955-956.Crossref 44. Olanow CW. Oxidation reactions in Parkinson's disease . Neurology . 1990;40( (suppl 3) ):32-37. 45. Snell LD, Johnson KM. Antagonism of N-methyl-D-asparate-induced transmitter release in the rat striatum by phencyclidine-like drugs and its relationship to turning behavior . J Pharmacol Exp Ther . 1985;235:50-57. 46. Lehmann J, Scatton B. Characterization of the excitatory amino acid receptor-mediated release of [3H]acetylcholine from rat striatal slices . Brain Res . 1982;252:77-89.Crossref 47. Mouradian MM, Chase TN. Hypothesis: central mechanisms and levodopa response fluctuations in Parkinson's disease . Clin Neuropharmacol . 1988;11:378-385.Crossref 48. Criswell HE, Mueller RA, Breese GR. Long-term D1-dopamine receptor sensitization in neonatal 6-OHDA-lesioned rats is blocked by an NMDA antagonist . Brain Res . 1990;512:284-290.Crossref 49. Beal MF, Kowall NW, Ellison DW, et al. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid . Nature . 1986;321:168-172.Crossref 50. Young AB, Greenamyre JT, Hollingsworth Z, et al. NMDA receptor losses in putamen from patients with Huntington's disease . Science . 1988;241:981-983.Crossref 51. Plaitakis A. Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: a hypothesis . Ann Neurol . 1990;28:3-8.Crossref 52. Plaitakis A, Berl S, Yahr MD. Abnormal glutamate metabolism in adult-onset degenerative neurological disorder . Science . 1982;216:193-196.Crossref 53. Greenamyre JT, Young AB. Excitatory amino acids and Alzheimer's disease . Neurobiol Aging . 1989;10:593-602.Crossref 54. Greenamyre JT. Neuronal bioenergetic defects, excitotoxicity and Alzheimer's disease: 'use it and lose it.' Neurobiol Aging . 1991;12:334-336.Crossref 55. Nowak L, Bregestovski P, Ascher P, et al. Magnesium gates glutamate-activated channels in mouse central neurones . Nature . 1984;307:462-466.Crossref 56. Henneberry RC. The role of neuronal energy in the neurotoxicity of excitatory amino acids . Neurobiol Aging . 1989;10:611-613.Crossref 57. Novelli A, Reilly JA, Lysko PG Henneberry RC. Glutamate becomes neurotoxic via the NMDA receptor when intracellular energy levels are reduced . Brain Res . 1988;451:205-212.Crossref 58. Mizuno Y, Ohta S, Tanaka M, et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease . Biochem Biophys Res Commun . 1989;163:1450-1455.Crossref 59. Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson's disease . Ann Neurol . 1989;26:719-723.Crossref 60. Schapira AHV, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson's disease . Lancet . 1989;1:1269.Crossref 61. Sonsalla PK, Nicklas WJ, Heikkila RE. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity . Science . 1989;243:398-400.Crossref 62. Turski L, Bressler K, Rettig K-J, et al. N-methyl-D-aspartate antagonists protect substantia nigra from MPP+toxicity . Ann Neurol . 1990;28:295. Abstract.Crossref 63. Kindt MV, Nicklas WJ, Sonsalla PK, Heikkila RE. Mitochondria and the neurotoxicity of MPTP . Trends Pharmacol Sci . 1986;7:473-475.Crossref 64. Allen RM. Role of amantadine in the management of neuroleptic induced extrapyramidal syndromes: overview and pharmacology . Clin Neuropharmacol . 1983;6( (suppl 1) ):64-73.Crossref 65. Koek W, Woods JH, Winger JD. MK-801, a proposed noncompetitive antagonist of excitatory amino acid neurotransmission, produces phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys . J Pharmacol Exp Ther . 1988;245:969-974. 66. Morris RGM, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist . Nature . 1986;319:774-776.Crossref 67. Woods JH, Koek W, Ornstein P. A preliminary study of PCP-like behavioral effects of 2-amino-5-phosphonovalerate in rhesus monkey . In: Hicks TP, Lodge D, McLennan H, eds. Excitatory Amino Acid Transmission . New York. NY: Alan R Liss; 1987:205-212. 68. Troupin AS, Mendius JR, Cheng F, Risinger MW. MK-801 . In: Meldrum BS, Porter RJ, eds. Current Problems in Epilepsy . London, England: John Libbey; 1986;4:191-201. 69. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs . Science . 1989;244:1360-1362.Crossref 70. Allen HW, Iversen LL. Phencyclidine, dizocilpine, and cerebrocortical neurons . Science . 1990;247:221.Crossref 71. Olney JW, Labruyere J, Wang GJ, Price MT. Anticholinergics prevent neurotoxic side effects of NMDA antagonists . Soc Neurosci Abstr . 1990;16:1122. Abstract. 72. Greenamyre JT, Zhang ZM, Gash DM, Kurlan RK, Turski L. A glutamate antagonist, NBQX, has antiparkinsonian effects in MPTP-treated monkeys . Neurology . 1991;41:1163. Abstract. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Neurology American Medical Association

N-Methyl-d-Aspartate Antagonists in the Treatment of Parkinson's Disease

Loading next page...
 
/lp/american-medical-association/n-methyl-d-aspartate-antagonists-in-the-treatment-of-parkinson-s-B8nbZLVyri

References (78)

Publisher
American Medical Association
Copyright
Copyright © 1991 American Medical Association. All Rights Reserved.
ISSN
0003-9942
eISSN
1538-3687
DOI
10.1001/archneur.1991.00530210109030
Publisher site
See Article on Publisher Site

Abstract

Abstract • Current long-term treatment of Parkinson's disease is inadequate, and improved symptomatic and neuroprotective therapies are needed. Recent interest has focused on the use of antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor in Parkinson's disease. Abnormally increased activity of the subthalamic nucleus is postulated to play a central pathophysiological role in the signs of Parkinson's disease, and NMDA antagonists may provide a means of decreasing this activity selectively. Like dopaminergic agonists, NMDA antagonists can reverse the akinesia and rigidity associated with monoamine depletion or neuroleptic-induced catalepsy. Very low doses of NMDA antagonists markedly potentiate the therapeutic effects of dopaminergic agonists. There is evidence that the beneficial effects of anticholinergic drugs and amantadine may be mediated, in part, by NMDA receptor blockade. Moreover, NMDA antagonists provide profound protection of dopaminergic neurons of the substantia nigra in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and methamphetamine models of Parkinson's disease. The clinical use of NMDA antagonists may prove useful in Parkinson's disease to treat symptoms and retard disease progression. References 1. Cedarbaum JM. Pharmacokinetic and pharmacodynamic considerations in management of motor response fluctuations in Parkinson's disease . Neurol Clin . 1990;8:31-49. 2. Kurlan R. Practical therapy of Parkinson's disease . Semin Neurol . 1987;7:160-166.Crossref 3. Comella CL, Tanner CM. Anticholinergic drugs in the treatment of Parkinson's disease . In: Koller WC, Paulson G, eds. Therapy of Parkinson's Disease . New York, NY: Marcel Dekker Inc; 1990:123-141. 4. Cotzias GC, VanWoert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism . N Engl J Med . 1967;276:374-379.Crossref 5. Ehringer H, Hornykiewicz O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems . Klin Wochenschr . 1960;38:1236-1239.Crossref 6. Jankovic J, Marsden CD. Therapeutic strategies in Parkinson's disease . In: Jankovic J, Tolosa E, eds. Parkinson's Disease and Movement Disorders . Baltimore, Md: Urban & Schwarzenberg; 1988:95-119. 7. Parkinson Study Group. DATATOP: a multi-center controlled clinical trial in early Parkinson's disease . N Engl J Med . 1989;46:1052-1060. 8. Miller WC, DeLong MR. Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism . In: Carpenter MB, Jayarman A, eds. The Basal Ganglia II . New York, NY: Plenum Press; 1987:415-427. 9. Pan HS, Walters JR. Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat . Synapse . 1988;2:650-659.Crossref 10. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders . Trends Neurosci . 1989;12:366-375.Crossref 11. Klockgether T, Turski L. Excitatory amino acids and the basal ganglia: implications for the therapy of Parkinson's disease . Trends Neurosci . 1989;12:285-286.Crossref 12. Mitchell IJ, Clarke CE, Boyce S, Robertson RG, et al. Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine . Neuroscience . 1989;32:213-226.Crossref 13. Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus . Science . 1990;249:1436-1438.Crossref 14. Albin RL, Aldridge JW, Young AB, Gilman S. Feline subthalamic nucleus neurons contain glutamate-like but not GABA-like or glycine-like immunoreactivity . Brain Res . 1989;491:185-188.Crossref 15. Smith Y, Parent A. Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity . Brain Res . 1988;453:353-356.Crossref 16. Watkins JC, Evans RH. Excitatory amino acid transmitters . Annu Rev Pharmacol Toxicol . 1981;21:165-204.Crossref 17. Dingledine R, Boland LM, Chamberlin NL, et al. Amino acid receptors and uptake systems in the mammalian central nervous system . Crit Rev Neurobiol . 1988;4:1-96. 18. Albin RL, Makowiec RL, Hollingsworth Z, et al. Excitatory amino acid receptors in rat basal ganglia . Soc Neurosci Abstr . 1990;16:1233. Abstract. 19. Klockgether T, Turski L. NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats . Ann Neurol . 1990;28:539-546.Crossref 20. Afsharpour S. Topographical projections of the cerebral cortex to the subthalamic nucleus . J Comp Neurol . 1985;236:14-28.Crossref 21. Nakanishi H, Kita H, Kitai ST. An N-methyl-D-aspartate receptor mediated excitatory postsynaptic potential evoked in subthalamic neurons in an in vitro slice preparation of the rat . Neurosci Lett . 1988;95:130-136.Crossref 22. Carlsson M, Carlsson A. The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice . J Neural Transm . 1989;75:221-226.Crossref 23. Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson's disease . Trends Neurosci . 1990;13:272-276.Crossref 24. Crossman AR, Peggs D, Boyce S, et al. Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey . Neuropharmacology . 1989;28:1271-1273.Crossref 25. Kebabian JW, Calne DB. Multiple receptors for dopamine . Nature . 1979;277:93-96.Crossref 26. Nairn AC, Hemmings HC Jr, Greengard P. Protein kinases in the brain . Annu Rev Biochem . 1985;54:931-976.Crossref 27. Ouimet CC, Miller PE, Hemmings HC Jr, et al. DARPP-32, a dopamine and adenosine 3′,5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions, III: immunocytochemical localization . J Neurosci . 1984;4:111-124. 28. Hemmings HC Jr, Greengard P, Tung HYL, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1 . Nature . 1984;310:503-505.Crossref 29. Halpain S, Girault J-A, Greengard P. Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices . Nature . 1990;343:369-372.Crossref 30. Girault J-A, Halpain S, Greengard P. Excitatory amino acid antagonists and Parkinson's disease . Trends Neurosci . 1990;13:325-326.Crossref 31. Schmidt WJ, Bubser M, Hauber W. Excitatory amino acids and Parkinson's disease . Trends Neurosci . 1990;13:46-47.Crossref 32. Schmidt WJ, Bubser M. Anticataleptic effects of the N-methyl-D-aspartate antagonist MK-801 in rats . Pharmacol Biochem Behav . 1989;32:621-623.Crossref 33. Gruen RJ, Roth RH, Bunney BS, Moghaddam B. Increase in striatal dopamine release following local perfusion of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid . Soc Neurosci Abstr . 1990;16:679. Abstract. 34. Bennett JP Jr, Leslie CA. NMDA receptors modulate striatal dopamine release and metabolism in vivo: a microdialysis study . Soc Neurosci Abstr . 1990;16:679. Abstract. 35. Imperato A, Jensen LH, Alivernini L, et al. The effect of selective agonists and antagonists of excitatory amino acid receptors on dopaminergic and cholinergic neurotransmission in awake rats: possible clinical implications . Soc Neurosci Abstr . 1990;16:679. Abstract. 36. Duvoisin RC. Cholinergic-anticholinergic antagonism in parkinsonism . Arch Neurol . 1967;17:124-136.Crossref 37. Burke RE, Fahn S. Serum trihexyphenidyl levels in the treatment of torsion dystonia . Neurology . 1985;35:1066-1069.Crossref 38. Burke RE, Fahn S. Pharmacokinetics of trihexyphenidyl after short-term and long-term administration to dystonic patients . Ann Neurol . 1985;18:35-40.Crossref 39. Burke RE. The relative selectivity of anticholinergic drugs for the Ml and M2 muscarinic subtypes . Mov Disord . 1986;1:135-144.Crossref 40. Olney JW, Price MT, Labruyere J, et al. Anti-parkinsonian agents are phencyclidine agonists and N-methyl-D-asparate antagonists . Eur J Pharmacol . 1987;142:319-320.Crossref 41. Bormann J. Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels . Eur J Pharmacol . 1989;166:591-592.Crossref 42. Kornhuber J, Bormann J, Retz W, et al. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex . Eur J Pharmacol . 1989;166:589-590.Crossref 43. Quirion R, Pert CB. Amantadine modulates phencyclidine binding site sensitivity in rat brain . Experientia . 1982;38:955-956.Crossref 44. Olanow CW. Oxidation reactions in Parkinson's disease . Neurology . 1990;40( (suppl 3) ):32-37. 45. Snell LD, Johnson KM. Antagonism of N-methyl-D-asparate-induced transmitter release in the rat striatum by phencyclidine-like drugs and its relationship to turning behavior . J Pharmacol Exp Ther . 1985;235:50-57. 46. Lehmann J, Scatton B. Characterization of the excitatory amino acid receptor-mediated release of [3H]acetylcholine from rat striatal slices . Brain Res . 1982;252:77-89.Crossref 47. Mouradian MM, Chase TN. Hypothesis: central mechanisms and levodopa response fluctuations in Parkinson's disease . Clin Neuropharmacol . 1988;11:378-385.Crossref 48. Criswell HE, Mueller RA, Breese GR. Long-term D1-dopamine receptor sensitization in neonatal 6-OHDA-lesioned rats is blocked by an NMDA antagonist . Brain Res . 1990;512:284-290.Crossref 49. Beal MF, Kowall NW, Ellison DW, et al. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid . Nature . 1986;321:168-172.Crossref 50. Young AB, Greenamyre JT, Hollingsworth Z, et al. NMDA receptor losses in putamen from patients with Huntington's disease . Science . 1988;241:981-983.Crossref 51. Plaitakis A. Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: a hypothesis . Ann Neurol . 1990;28:3-8.Crossref 52. Plaitakis A, Berl S, Yahr MD. Abnormal glutamate metabolism in adult-onset degenerative neurological disorder . Science . 1982;216:193-196.Crossref 53. Greenamyre JT, Young AB. Excitatory amino acids and Alzheimer's disease . Neurobiol Aging . 1989;10:593-602.Crossref 54. Greenamyre JT. Neuronal bioenergetic defects, excitotoxicity and Alzheimer's disease: 'use it and lose it.' Neurobiol Aging . 1991;12:334-336.Crossref 55. Nowak L, Bregestovski P, Ascher P, et al. Magnesium gates glutamate-activated channels in mouse central neurones . Nature . 1984;307:462-466.Crossref 56. Henneberry RC. The role of neuronal energy in the neurotoxicity of excitatory amino acids . Neurobiol Aging . 1989;10:611-613.Crossref 57. Novelli A, Reilly JA, Lysko PG Henneberry RC. Glutamate becomes neurotoxic via the NMDA receptor when intracellular energy levels are reduced . Brain Res . 1988;451:205-212.Crossref 58. Mizuno Y, Ohta S, Tanaka M, et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease . Biochem Biophys Res Commun . 1989;163:1450-1455.Crossref 59. Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson's disease . Ann Neurol . 1989;26:719-723.Crossref 60. Schapira AHV, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson's disease . Lancet . 1989;1:1269.Crossref 61. Sonsalla PK, Nicklas WJ, Heikkila RE. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity . Science . 1989;243:398-400.Crossref 62. Turski L, Bressler K, Rettig K-J, et al. N-methyl-D-aspartate antagonists protect substantia nigra from MPP+toxicity . Ann Neurol . 1990;28:295. Abstract.Crossref 63. Kindt MV, Nicklas WJ, Sonsalla PK, Heikkila RE. Mitochondria and the neurotoxicity of MPTP . Trends Pharmacol Sci . 1986;7:473-475.Crossref 64. Allen RM. Role of amantadine in the management of neuroleptic induced extrapyramidal syndromes: overview and pharmacology . Clin Neuropharmacol . 1983;6( (suppl 1) ):64-73.Crossref 65. Koek W, Woods JH, Winger JD. MK-801, a proposed noncompetitive antagonist of excitatory amino acid neurotransmission, produces phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys . J Pharmacol Exp Ther . 1988;245:969-974. 66. Morris RGM, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist . Nature . 1986;319:774-776.Crossref 67. Woods JH, Koek W, Ornstein P. A preliminary study of PCP-like behavioral effects of 2-amino-5-phosphonovalerate in rhesus monkey . In: Hicks TP, Lodge D, McLennan H, eds. Excitatory Amino Acid Transmission . New York. NY: Alan R Liss; 1987:205-212. 68. Troupin AS, Mendius JR, Cheng F, Risinger MW. MK-801 . In: Meldrum BS, Porter RJ, eds. Current Problems in Epilepsy . London, England: John Libbey; 1986;4:191-201. 69. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs . Science . 1989;244:1360-1362.Crossref 70. Allen HW, Iversen LL. Phencyclidine, dizocilpine, and cerebrocortical neurons . Science . 1990;247:221.Crossref 71. Olney JW, Labruyere J, Wang GJ, Price MT. Anticholinergics prevent neurotoxic side effects of NMDA antagonists . Soc Neurosci Abstr . 1990;16:1122. Abstract. 72. Greenamyre JT, Zhang ZM, Gash DM, Kurlan RK, Turski L. A glutamate antagonist, NBQX, has antiparkinsonian effects in MPTP-treated monkeys . Neurology . 1991;41:1163. Abstract.

Journal

Archives of NeurologyAmerican Medical Association

Published: Sep 1, 1991

There are no references for this article.