Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Widespread Functional Effects of Discrete Thalamic Infarction

Widespread Functional Effects of Discrete Thalamic Infarction Abstract • In order to investigate functional effects of various thalamic structures on metabolism in remote, morphologically intact cerebral regions, we used positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose to study regional cerebral metabolic rates of glucose (rCMRGIu) in 11 patients with chronic unilateral or bilateral infarcts strictly confined to the thalamus. Patients were grouped according to computed tomographic scans showing anterior (three), medial (four), or posterior (four) lesions. Compared with a matched group of 11 healthy subjects (hemispheric CMRGIu 35.2 ± 3.49 μmol/100 g per minute), glucose metabolism was significantly lower in the hemisphere ipsilateral to the infarction (31.2 ± 2.97 μmol/100 g per minute). Patients with bilateral infarcts had lower hemispheric CMRGIu (29.9 ± 2.74 μmol/100 g per minute) than those with unilateral lesions (32.2 ± 2.97 μmol/100 g per minute). Depending on infarct location within the thalamus, there was differential depression of rCMRGIu, with the largest effects on frontal and occipital areas in medial infarctions. Except for ipsilateral thalamic deactivation, metabolic patterns with anterior thalamic infarcts were close to normal, while posterior infarcts mostly depressed rCMRGIu in the visual and in the inferior limbic cortex. Cerebellar metabolic rates were within normal limits in most cases. These patterns of regional cerebral deactivation may be related to categories of thalamic projections—intrathalamic, to limbic system and basal ganglia, diffuse to most cortical areas, and specific to defined neocortical areas. Even small brain lesions may have widespread functional sequelae, potentially demonstrable by positron emission tomography. References 1. Kuhl DE, Phelps ME, Howell AP, et al. Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3 . Ann Neurol . 1980;8:47-60.Crossref 2. Baron JC, Bousser MG, Comar D, et al. 'Crossed cerebellar diaschis' in human supratentorial brain infarction . Trans Am Neurol Assoc . 1980;105:459-461. 3. Heiss WD, Ilsen HW, Wagner R, et al. Remote functional depression of glucose metabolism in stroke and its alteration by activating drugs . In: Heiss WD, Phelps ME, eds. Positron Emission Tomography of the Brain . Berlin, Federal Republic of Germany: Springer Verlag; 1983:162-168. 4. Martin WRW, Raichle ME. Cerebellar blood flow and metabolism in cerebral hemisphere infarction . Ann Neurol . 1983;14:168-176.Crossref 5. Kushner M, Alavi A, Reivich M, et al. Contralateral cerebellar hypometabolism following cerebral insult: a positron emission tomographic study . Ann Neurol . 1984;15:425-434.Crossref 6. Pawlik G, Herholz K, Beil C, et al. Remote effects of focal lesions on cerebral flow and metabolism . In: Heiss WD, ed. Functional Mapping of the Brain in Vascular Disorders . Berlin, Federal Republic of Germany: Springer Verlag; 1985:59-83. 7. von Monakow C. Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde . Wiesbaden, Federal Republic of Germany: Bergmann; 1914. 8. Powers WJ, Raichle ME. Positron emission tomography and its application to the study of cerebrovascular disease in man . Stroke . 1985;16:361-376.Crossref 9. Duchen LW. General pathology of neurons and neuroglia . In: Adams JH, Corsellis JAN, Duchen LW, eds. Greenfield's Neuropathology . London, England: E Arnold; 1984:1-52. 10. Leonhardt H, Krisch B, Zilles K. Graue und weiβe Substanz des Zwischenhirns . In: Leonhardt H, Tillmann B, Töndury G, Zilles K, eds. Anatomie des Menschen . Stuttgart, Federal Republic of Germany: Georg Thieme; 1987;3:319-369. 11. Metter EJ, Riege WH, Hanson WR, et al. Comparisons of metabolic rates, language and memory in subcortical aphasias . Brain Lang . 1983;19:33-47.Crossref 12. Pawlik G, Beil C, Herholz K, et al. Comparative dynamic FDG-PET study of functional deactivation in thalamic versus extrathalamic focal ischemic brain lesions . J Cereb Blood Flow Metab . 1985;5( (suppl 1) ):S9-S10. 13. Baron JC, D'Antona R, Pantano P, et al. Effects of thalamic stroke on energy metabolism of the cerebral cortex . Brain . 1986;109:1243-1259.Crossref 14. Rosseaux M, Steinling M, Petit H, et al. Perturbations du débit sanguin hémisphérique et hématomes cérébraux profonds . Rev Neurol (Paris) . 1986;4:480-488. 15. Perani D, Vallar G, Cappa S, et al. Aphasia and neglect after subcortical stroke . Brain . 1987;110:1211-1229.Crossref 16. Cambon H, Baron JC, Pappata S, et al. Recovery of cortical metabolism after thalamic lesions in humans: a manifestation of plasticity? J Cereb Blood Flow Metab . 1987;7( (suppl 1) ):S194. 17. Olsen TS, Bruhn P, Öberg RGE. Cortical hypoperfusion as a possible cause of subcortical aphasia . Brain . 1986;109:393-410.Crossref 18. Pappata S, Cambon H, Samson Y, et al. Remote metabolic effects of thalamic and capsular stroke: clinical-topographical correlations . J Cereb Blood Flow Metab . 1987;7( (suppl 1) ):S42. 19. Girault JA, Savaki HE, Desban M, et al. Bilateral cerebral metabolic alterations following lesion of the ventromedial thalamic nucleus: mapping by the 14C-deoxyglucose method in conscious rats . J Compar Neurol . 1985;231:137-149.Crossref 20. Reivich M, Kuhl D, Wolf A, et al. The (18F)-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man . Circ Res . 1979;44:127-137.Crossref 21. Eriksson L, Bohm C, Kesselberg M, et al. A four ring positron camera system for emission tomography of the brain . IEEE Trans Nucl Sci . 1982;29:539-543.Crossref 22. Ehrenkaufer RE, Potocki JE, Jewett DM. Simple synthesis of 18F-labeled 2-fluoro-2-deoxy-D-glucose: concise communication . J Nucl Med . 1984;25:333-337. 23. Heiss WD, Pawlik G, Herholz K, et al. Regional kinetic constants and CMRGIu in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose . J Cereb Blood Flow Metab . 1984;4:212-223.Crossref 24. Wienhard K, Pawlik G, Herholz K, et al. Estimation of local cerebral glucose utilization by positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures . J Cereb Blood Flow Metab . 1985;5:115-125.Crossref 25. Herholz K, Pawlik G, Wienhard K, et al. Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms . J Comput Assist Tomogr . 1985;9:154-161.Crossref 26. Pawlik G, Herholz K, Wienhard K, et al. Some maximum likelihood methods useful for the regional analysis of dynamic PET data on brain glucose metabolism . In: Bacharach SL, ed. Information Processing in Medical Imaging . Dordrecht, the Netherlands: M Nijhoff Publisher; 1986:298-310. 27. Chawluk JB, Alavi A, Jamieson DG, et al. Changes in local cerebral glucose metabolism with normal aging: the effects of cardiovascular and systemic health factors . J Cereb Blood Flow Metab . 1987;7( (suppl 1) ):S411. 28. Huynh H, Feldt LS. Estimation of the Box correction for degrees of freedom from sample data in the randomized block and split plot designs . J Educ Stat . 1976;1:69-82.Crossref 29. Creutzfeldt OD: Cortex Cerebri . Berlin, Federal Republic of Germany: Springer Verlag; 1983. 30. Phelps ME, Mazziotta JC, Huang SC. Study of cerebral function with positron computed tomography . J Cereb Blood Flow Metab . 1982;2:113-162.Crossref 31. Raichle ME. Circulatory and metabolic correlates of brain function in normal humans . In: Plum F, ed. Handbook of Physiology . Bethesda, Md: American Physiological Society; 1987;1:643-674. 32. Pawlik G, Heiss WD. Positron emission tomography and neuropsychological function . In: Bigler ED, Yeo RA, Turkheimer E, eds. Neuropsychological Function and Brain Imaging . New York, NY: Plenum Publishing Corp; 1989:65-138. 33. Mehler WR. Further notes on the centre median, nucleus of Luys . In: Purpura DP, Yahr MD, eds. The Thalamus . New York, NY: Columbia University Press; 1966:109-127. 34. Katayama Y, Tsubokawa T, Hirayama T, et al. Response of regional cerebral blood flow and oxygen metabolism to thalamic stimulation in humans as revealed by positron emission tomography . J Cereb Blood Flow Metab . 1986;6:637-641.Crossref 35. White EL. Identified neurons in mouse SmI cortex which are postsynaptic to thalamo-cortical axon terminals: a combined Golgi-electron microscopic and degeneration study . J Comp Neurol . 1978;181:627-662.Crossref 36. Foix CH, Hillemand P. Les artères de l'axe encéphalique jusqu'au diencéphale inclusivement . Rev Neurol . 1925;44:705-739. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Neurology American Medical Association

Widespread Functional Effects of Discrete Thalamic Infarction

Loading next page...
 
/lp/american-medical-association/widespread-functional-effects-of-discrete-thalamic-infarction-DjyWv85TrC

References (43)

Publisher
American Medical Association
Copyright
Copyright © 1991 American Medical Association. All Rights Reserved.
ISSN
0003-9942
eISSN
1538-3687
DOI
10.1001/archneur.1991.00530140072019
Publisher site
See Article on Publisher Site

Abstract

Abstract • In order to investigate functional effects of various thalamic structures on metabolism in remote, morphologically intact cerebral regions, we used positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose to study regional cerebral metabolic rates of glucose (rCMRGIu) in 11 patients with chronic unilateral or bilateral infarcts strictly confined to the thalamus. Patients were grouped according to computed tomographic scans showing anterior (three), medial (four), or posterior (four) lesions. Compared with a matched group of 11 healthy subjects (hemispheric CMRGIu 35.2 ± 3.49 μmol/100 g per minute), glucose metabolism was significantly lower in the hemisphere ipsilateral to the infarction (31.2 ± 2.97 μmol/100 g per minute). Patients with bilateral infarcts had lower hemispheric CMRGIu (29.9 ± 2.74 μmol/100 g per minute) than those with unilateral lesions (32.2 ± 2.97 μmol/100 g per minute). Depending on infarct location within the thalamus, there was differential depression of rCMRGIu, with the largest effects on frontal and occipital areas in medial infarctions. Except for ipsilateral thalamic deactivation, metabolic patterns with anterior thalamic infarcts were close to normal, while posterior infarcts mostly depressed rCMRGIu in the visual and in the inferior limbic cortex. Cerebellar metabolic rates were within normal limits in most cases. These patterns of regional cerebral deactivation may be related to categories of thalamic projections—intrathalamic, to limbic system and basal ganglia, diffuse to most cortical areas, and specific to defined neocortical areas. Even small brain lesions may have widespread functional sequelae, potentially demonstrable by positron emission tomography. References 1. Kuhl DE, Phelps ME, Howell AP, et al. Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3 . Ann Neurol . 1980;8:47-60.Crossref 2. Baron JC, Bousser MG, Comar D, et al. 'Crossed cerebellar diaschis' in human supratentorial brain infarction . Trans Am Neurol Assoc . 1980;105:459-461. 3. Heiss WD, Ilsen HW, Wagner R, et al. Remote functional depression of glucose metabolism in stroke and its alteration by activating drugs . In: Heiss WD, Phelps ME, eds. Positron Emission Tomography of the Brain . Berlin, Federal Republic of Germany: Springer Verlag; 1983:162-168. 4. Martin WRW, Raichle ME. Cerebellar blood flow and metabolism in cerebral hemisphere infarction . Ann Neurol . 1983;14:168-176.Crossref 5. Kushner M, Alavi A, Reivich M, et al. Contralateral cerebellar hypometabolism following cerebral insult: a positron emission tomographic study . Ann Neurol . 1984;15:425-434.Crossref 6. Pawlik G, Herholz K, Beil C, et al. Remote effects of focal lesions on cerebral flow and metabolism . In: Heiss WD, ed. Functional Mapping of the Brain in Vascular Disorders . Berlin, Federal Republic of Germany: Springer Verlag; 1985:59-83. 7. von Monakow C. Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde . Wiesbaden, Federal Republic of Germany: Bergmann; 1914. 8. Powers WJ, Raichle ME. Positron emission tomography and its application to the study of cerebrovascular disease in man . Stroke . 1985;16:361-376.Crossref 9. Duchen LW. General pathology of neurons and neuroglia . In: Adams JH, Corsellis JAN, Duchen LW, eds. Greenfield's Neuropathology . London, England: E Arnold; 1984:1-52. 10. Leonhardt H, Krisch B, Zilles K. Graue und weiβe Substanz des Zwischenhirns . In: Leonhardt H, Tillmann B, Töndury G, Zilles K, eds. Anatomie des Menschen . Stuttgart, Federal Republic of Germany: Georg Thieme; 1987;3:319-369. 11. Metter EJ, Riege WH, Hanson WR, et al. Comparisons of metabolic rates, language and memory in subcortical aphasias . Brain Lang . 1983;19:33-47.Crossref 12. Pawlik G, Beil C, Herholz K, et al. Comparative dynamic FDG-PET study of functional deactivation in thalamic versus extrathalamic focal ischemic brain lesions . J Cereb Blood Flow Metab . 1985;5( (suppl 1) ):S9-S10. 13. Baron JC, D'Antona R, Pantano P, et al. Effects of thalamic stroke on energy metabolism of the cerebral cortex . Brain . 1986;109:1243-1259.Crossref 14. Rosseaux M, Steinling M, Petit H, et al. Perturbations du débit sanguin hémisphérique et hématomes cérébraux profonds . Rev Neurol (Paris) . 1986;4:480-488. 15. Perani D, Vallar G, Cappa S, et al. Aphasia and neglect after subcortical stroke . Brain . 1987;110:1211-1229.Crossref 16. Cambon H, Baron JC, Pappata S, et al. Recovery of cortical metabolism after thalamic lesions in humans: a manifestation of plasticity? J Cereb Blood Flow Metab . 1987;7( (suppl 1) ):S194. 17. Olsen TS, Bruhn P, Öberg RGE. Cortical hypoperfusion as a possible cause of subcortical aphasia . Brain . 1986;109:393-410.Crossref 18. Pappata S, Cambon H, Samson Y, et al. Remote metabolic effects of thalamic and capsular stroke: clinical-topographical correlations . J Cereb Blood Flow Metab . 1987;7( (suppl 1) ):S42. 19. Girault JA, Savaki HE, Desban M, et al. Bilateral cerebral metabolic alterations following lesion of the ventromedial thalamic nucleus: mapping by the 14C-deoxyglucose method in conscious rats . J Compar Neurol . 1985;231:137-149.Crossref 20. Reivich M, Kuhl D, Wolf A, et al. The (18F)-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man . Circ Res . 1979;44:127-137.Crossref 21. Eriksson L, Bohm C, Kesselberg M, et al. A four ring positron camera system for emission tomography of the brain . IEEE Trans Nucl Sci . 1982;29:539-543.Crossref 22. Ehrenkaufer RE, Potocki JE, Jewett DM. Simple synthesis of 18F-labeled 2-fluoro-2-deoxy-D-glucose: concise communication . J Nucl Med . 1984;25:333-337. 23. Heiss WD, Pawlik G, Herholz K, et al. Regional kinetic constants and CMRGIu in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose . J Cereb Blood Flow Metab . 1984;4:212-223.Crossref 24. Wienhard K, Pawlik G, Herholz K, et al. Estimation of local cerebral glucose utilization by positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures . J Cereb Blood Flow Metab . 1985;5:115-125.Crossref 25. Herholz K, Pawlik G, Wienhard K, et al. Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms . J Comput Assist Tomogr . 1985;9:154-161.Crossref 26. Pawlik G, Herholz K, Wienhard K, et al. Some maximum likelihood methods useful for the regional analysis of dynamic PET data on brain glucose metabolism . In: Bacharach SL, ed. Information Processing in Medical Imaging . Dordrecht, the Netherlands: M Nijhoff Publisher; 1986:298-310. 27. Chawluk JB, Alavi A, Jamieson DG, et al. Changes in local cerebral glucose metabolism with normal aging: the effects of cardiovascular and systemic health factors . J Cereb Blood Flow Metab . 1987;7( (suppl 1) ):S411. 28. Huynh H, Feldt LS. Estimation of the Box correction for degrees of freedom from sample data in the randomized block and split plot designs . J Educ Stat . 1976;1:69-82.Crossref 29. Creutzfeldt OD: Cortex Cerebri . Berlin, Federal Republic of Germany: Springer Verlag; 1983. 30. Phelps ME, Mazziotta JC, Huang SC. Study of cerebral function with positron computed tomography . J Cereb Blood Flow Metab . 1982;2:113-162.Crossref 31. Raichle ME. Circulatory and metabolic correlates of brain function in normal humans . In: Plum F, ed. Handbook of Physiology . Bethesda, Md: American Physiological Society; 1987;1:643-674. 32. Pawlik G, Heiss WD. Positron emission tomography and neuropsychological function . In: Bigler ED, Yeo RA, Turkheimer E, eds. Neuropsychological Function and Brain Imaging . New York, NY: Plenum Publishing Corp; 1989:65-138. 33. Mehler WR. Further notes on the centre median, nucleus of Luys . In: Purpura DP, Yahr MD, eds. The Thalamus . New York, NY: Columbia University Press; 1966:109-127. 34. Katayama Y, Tsubokawa T, Hirayama T, et al. Response of regional cerebral blood flow and oxygen metabolism to thalamic stimulation in humans as revealed by positron emission tomography . J Cereb Blood Flow Metab . 1986;6:637-641.Crossref 35. White EL. Identified neurons in mouse SmI cortex which are postsynaptic to thalamo-cortical axon terminals: a combined Golgi-electron microscopic and degeneration study . J Comp Neurol . 1978;181:627-662.Crossref 36. Foix CH, Hillemand P. Les artères de l'axe encéphalique jusqu'au diencéphale inclusivement . Rev Neurol . 1925;44:705-739.

Journal

Archives of NeurologyAmerican Medical Association

Published: Feb 1, 1991

There are no references for this article.