Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Cerebral Energy Reserves After Prolonged Hypoxia and Ischemia

Cerebral Energy Reserves After Prolonged Hypoxia and Ischemia Abstract This presentation is intended to summarize information obtained on the energy state of the brain in hypoxia (low arterial oxygen pressure [Po2]) and in ischemia (interruption of the cerebral circulation). The discussion is directed to the following questions: (1) At what arterial and cerebral venous Po2 levels are there changes indicating a derangement of cerebral energy metabolism? (2) What is the metabolic picture in complete ischemia, and when does energy depletion occur? (3) Is there complete restitution of energy metabolism even after prolonged ischemia, or are there postischemic changes indicative of a permanent biochemical lesion? (4) Can the biochemical data reveal the presence of unperfused areas? The results were obtained on lightly anesthetized and artificially ventilated rats in which body temperature, arterial blood pressure, and arterial Po2, carbon dioxide pressure (Pco2), and pH were monitored. Cerebral metabolites were analyzed after freezing the tissue in situ, using the References 1. Lowry OH, Passonneau JV: A Flexible System of Enzymatic Analysis . New York, Academic Press, 1972. 2. Folbergrová J, MacMillan V, Siesjö BK: The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmatic NADH/NAD+ ratio of the rat brain . J Neurochem 19:2497-2505, 1972.Crossref 3. Pontén U, et al: Optimal freezing conditions for cerebral metabolites in rats . J Neurochem , to be published. 4. Siesjö BK, Folbergrová J, MacMillan V: The effect of hypercapnia upon intracellular pH in the brain, evaluated by the bicarbonate-carbonic acid method and from the creatine phosphokinase equilibrium . J Neurochem 19:2483-2495, 1972.Crossref 5. Cohen PJ, et al: Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man . J Appl Physiol 23:183-189, 1967. 6. Duffy TE, Nelson SR, Lowry OH: Cerebral carbohydrate metabolism during acute hypoxia and recovery . J Neurochem 19:959-977, 1972.Crossref 7. Gurdjian ES, Stone WE, Webster JE: Cerebral metabolism in hypoxia . Arch Neurol Psychiatry 51:472-477, 1944.Crossref 8. MacMillan U, Siesjö BK: Brain energy metabolism in hypoxemia . Scand J Clin Lab Invest 30:127-136, 1972.Crossref 9. Schmahl FW, et al: Energiestoffwechsel der Grosshirnrinde und Elektroencephalogramm bei Sauerstoffmangel . Pfluegers Arch 292:46-59, 1966.Crossref 10. Siesjö BK, Nilsson L: The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentration in the rat brain . Scand J Clin Lab 27:83-96, 1971.Crossref 11. McDowall DG: Interrelationships between blood oxygen tensions and cerebral blood flow , in Payne JP, Hill DW (eds): A Symposium on Oxygen Measurements in Blood and Tissues and Their Significance . London, J & A Churchill Ltd, 1966, pp 205-219. 12. Noell W: Über die Durchblutung und die Sauerstoffversorgung des Gehirns: VI. Mitteilung. Einfluss der Hypoxemie und Anämie . Pfluegers Arch 247:553-575, 1970.Crossref 13. Kogure K, et al: Mechanisms of cerebral vasodilation in hypoxia . J Appl Physiol 29:223-229, 1970. 14. Lowry OH, et al: Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain . J Biol Chem 239:18-30, 1964. 15. Lowry OH, Passonneau JV: The relationships between substrates and enzymes of glycolysis in brain . J Biol Chem 239:31-41, 1964. 16. Lowry OH, Passonneau JV: Kinetic evidence for multiple binding sites on phosphfuctokinase . J Biol Chem 241:2268-2279, 1966. 17. Rolleston FS, Newsholme EA: Control of glycolysis in cerebral cortex slices . Biochem J 104:524-533, 1967. 18. Atkinson DE: The energy charge of the adenylate pool as a regulatory parameter: Interaction with feedback modifiers . Biochemistry 7:4030-4034, 1968.Crossref 19. Bachelard H, et al: Mechanisms activating glycolysis in the brain in arterial hypoxia . J Neurochem , to be published. 20. Lewis LD, Pontén U, Siesjö BK: Homeo-static regulation of brain energy metabolism in hypoxia . Acta Physiol Scand 88:284-286, 1973.Crossref 21. Brown AW, Brierley JB: The nature, distribution and earliest stages of anoxic-ischaemic nerve cell damage in the rat brain as defined by the optical microscope . Br J Exp Pathol 49:87-106, 1968. 22. Lübbers DW: The oxygen pressure field of the brain and its significance for the normal and critical oxygen supply of the brain , in Lübbers DW, Thews G, Witzleb E (eds): Oxygen Transport in Blood and Tissue . Stuttgart, Germany, Georg Thieme Verlag, 1968, pp 124-139. 23. Gatfield PD, et al: Regional energy reserves in the mouse brain and changes with ischaemia and anaesthesia . J Neurochem 13:185-195, 1966.Crossref 24. Müller U, et al: Elektrocortigramm und regionaler Energiestoffwechsel des Kaningehirns in der postischämischen Erholung . Pfluegers Arch 320:181-194, 1970.Crossref 25. Hinzen DH, et al: Metabolism and function of dog's brain recovering from longtime ischemia . Am J Physiol 223:1158-1164, 1972. 26. Ames A III, et al: Cerebral ischemia: II. The no-reflow phenomenon . Am J Pathol 52:437-454, 1968. 27. Chiang J, et al: Cerebral ischemia: III. Vascular changes . Am J Pathol 52:455-476, 1968. 28. Hossmann K-A, Olsson Y: Suppression and recovery of neuronal function in transient cerebral ischemia . Brain Res 22:313-325, 1970.Crossref 29. Alvord EC Jr: The etiology and pathogenesis of experimental allergic encephalomyelitis , in Bailey OT, Smith DE (eds): The Central Nervous System . Baltimore, Williams & Wilkins Co, 1968, chap 4. 30. Gregg A: For Future Doctors . Chicago, University of Chicago Press, 1957, p 85. 31. Alvord EC Jr, et al: Subarachnoid hemorrhage due to ruptured aneurysms . Arch Neurol 27:273-284, 1972.Crossref 32. Brierley JB, et al: Brain damage in the rhesus monkey resulting from profound arterial hypotension: I. Its nature, distribution, and general physiological correlates . Brain Res 13:68-100, 1969.Crossref 33. Hossmann K-A, Sato K: Effect of ischaemia on the function of the sensorimotor cortex in cat . Electroencephalogr Clin Neurophysiol 30:535-545, 1971.Crossref 34. Meyer A, Falconer MA, Beck E: Pathological findings in temporal lobe epilepsy . J Neurol Neurosurg Psychiatry 17:276-285, 1954.Crossref 35. Friede RL, van Houten WH: Relations between post-mortem alterations and glycolytic metabolism in the brain . Exp Neurol 4:197-204, 1961.Crossref 36. Lindenberg R: Morphostatic necrobiosis: Investigations on the nerve cells of the brain . Am J Pathol 32:1147-1177, 1956. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Neurology American Medical Association

Cerebral Energy Reserves After Prolonged Hypoxia and Ischemia

Archives of Neurology , Volume 29 (6) – Dec 1, 1973

Loading next page...
 
/lp/american-medical-association/cerebral-energy-reserves-after-prolonged-hypoxia-and-ischemia-0dGi3BG3nY

References (42)

Publisher
American Medical Association
Copyright
Copyright © 1973 American Medical Association. All Rights Reserved.
ISSN
0003-9942
eISSN
1538-3687
DOI
10.1001/archneur.1973.00490300062008
Publisher site
See Article on Publisher Site

Abstract

Abstract This presentation is intended to summarize information obtained on the energy state of the brain in hypoxia (low arterial oxygen pressure [Po2]) and in ischemia (interruption of the cerebral circulation). The discussion is directed to the following questions: (1) At what arterial and cerebral venous Po2 levels are there changes indicating a derangement of cerebral energy metabolism? (2) What is the metabolic picture in complete ischemia, and when does energy depletion occur? (3) Is there complete restitution of energy metabolism even after prolonged ischemia, or are there postischemic changes indicative of a permanent biochemical lesion? (4) Can the biochemical data reveal the presence of unperfused areas? The results were obtained on lightly anesthetized and artificially ventilated rats in which body temperature, arterial blood pressure, and arterial Po2, carbon dioxide pressure (Pco2), and pH were monitored. Cerebral metabolites were analyzed after freezing the tissue in situ, using the References 1. Lowry OH, Passonneau JV: A Flexible System of Enzymatic Analysis . New York, Academic Press, 1972. 2. Folbergrová J, MacMillan V, Siesjö BK: The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmatic NADH/NAD+ ratio of the rat brain . J Neurochem 19:2497-2505, 1972.Crossref 3. Pontén U, et al: Optimal freezing conditions for cerebral metabolites in rats . J Neurochem , to be published. 4. Siesjö BK, Folbergrová J, MacMillan V: The effect of hypercapnia upon intracellular pH in the brain, evaluated by the bicarbonate-carbonic acid method and from the creatine phosphokinase equilibrium . J Neurochem 19:2483-2495, 1972.Crossref 5. Cohen PJ, et al: Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man . J Appl Physiol 23:183-189, 1967. 6. Duffy TE, Nelson SR, Lowry OH: Cerebral carbohydrate metabolism during acute hypoxia and recovery . J Neurochem 19:959-977, 1972.Crossref 7. Gurdjian ES, Stone WE, Webster JE: Cerebral metabolism in hypoxia . Arch Neurol Psychiatry 51:472-477, 1944.Crossref 8. MacMillan U, Siesjö BK: Brain energy metabolism in hypoxemia . Scand J Clin Lab Invest 30:127-136, 1972.Crossref 9. Schmahl FW, et al: Energiestoffwechsel der Grosshirnrinde und Elektroencephalogramm bei Sauerstoffmangel . Pfluegers Arch 292:46-59, 1966.Crossref 10. Siesjö BK, Nilsson L: The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentration in the rat brain . Scand J Clin Lab 27:83-96, 1971.Crossref 11. McDowall DG: Interrelationships between blood oxygen tensions and cerebral blood flow , in Payne JP, Hill DW (eds): A Symposium on Oxygen Measurements in Blood and Tissues and Their Significance . London, J & A Churchill Ltd, 1966, pp 205-219. 12. Noell W: Über die Durchblutung und die Sauerstoffversorgung des Gehirns: VI. Mitteilung. Einfluss der Hypoxemie und Anämie . Pfluegers Arch 247:553-575, 1970.Crossref 13. Kogure K, et al: Mechanisms of cerebral vasodilation in hypoxia . J Appl Physiol 29:223-229, 1970. 14. Lowry OH, et al: Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain . J Biol Chem 239:18-30, 1964. 15. Lowry OH, Passonneau JV: The relationships between substrates and enzymes of glycolysis in brain . J Biol Chem 239:31-41, 1964. 16. Lowry OH, Passonneau JV: Kinetic evidence for multiple binding sites on phosphfuctokinase . J Biol Chem 241:2268-2279, 1966. 17. Rolleston FS, Newsholme EA: Control of glycolysis in cerebral cortex slices . Biochem J 104:524-533, 1967. 18. Atkinson DE: The energy charge of the adenylate pool as a regulatory parameter: Interaction with feedback modifiers . Biochemistry 7:4030-4034, 1968.Crossref 19. Bachelard H, et al: Mechanisms activating glycolysis in the brain in arterial hypoxia . J Neurochem , to be published. 20. Lewis LD, Pontén U, Siesjö BK: Homeo-static regulation of brain energy metabolism in hypoxia . Acta Physiol Scand 88:284-286, 1973.Crossref 21. Brown AW, Brierley JB: The nature, distribution and earliest stages of anoxic-ischaemic nerve cell damage in the rat brain as defined by the optical microscope . Br J Exp Pathol 49:87-106, 1968. 22. Lübbers DW: The oxygen pressure field of the brain and its significance for the normal and critical oxygen supply of the brain , in Lübbers DW, Thews G, Witzleb E (eds): Oxygen Transport in Blood and Tissue . Stuttgart, Germany, Georg Thieme Verlag, 1968, pp 124-139. 23. Gatfield PD, et al: Regional energy reserves in the mouse brain and changes with ischaemia and anaesthesia . J Neurochem 13:185-195, 1966.Crossref 24. Müller U, et al: Elektrocortigramm und regionaler Energiestoffwechsel des Kaningehirns in der postischämischen Erholung . Pfluegers Arch 320:181-194, 1970.Crossref 25. Hinzen DH, et al: Metabolism and function of dog's brain recovering from longtime ischemia . Am J Physiol 223:1158-1164, 1972. 26. Ames A III, et al: Cerebral ischemia: II. The no-reflow phenomenon . Am J Pathol 52:437-454, 1968. 27. Chiang J, et al: Cerebral ischemia: III. Vascular changes . Am J Pathol 52:455-476, 1968. 28. Hossmann K-A, Olsson Y: Suppression and recovery of neuronal function in transient cerebral ischemia . Brain Res 22:313-325, 1970.Crossref 29. Alvord EC Jr: The etiology and pathogenesis of experimental allergic encephalomyelitis , in Bailey OT, Smith DE (eds): The Central Nervous System . Baltimore, Williams & Wilkins Co, 1968, chap 4. 30. Gregg A: For Future Doctors . Chicago, University of Chicago Press, 1957, p 85. 31. Alvord EC Jr, et al: Subarachnoid hemorrhage due to ruptured aneurysms . Arch Neurol 27:273-284, 1972.Crossref 32. Brierley JB, et al: Brain damage in the rhesus monkey resulting from profound arterial hypotension: I. Its nature, distribution, and general physiological correlates . Brain Res 13:68-100, 1969.Crossref 33. Hossmann K-A, Sato K: Effect of ischaemia on the function of the sensorimotor cortex in cat . Electroencephalogr Clin Neurophysiol 30:535-545, 1971.Crossref 34. Meyer A, Falconer MA, Beck E: Pathological findings in temporal lobe epilepsy . J Neurol Neurosurg Psychiatry 17:276-285, 1954.Crossref 35. Friede RL, van Houten WH: Relations between post-mortem alterations and glycolytic metabolism in the brain . Exp Neurol 4:197-204, 1961.Crossref 36. Lindenberg R: Morphostatic necrobiosis: Investigations on the nerve cells of the brain . Am J Pathol 32:1147-1177, 1956.

Journal

Archives of NeurologyAmerican Medical Association

Published: Dec 1, 1973

There are no references for this article.