Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Immunoregulatory Events in the Skin of Patients With Cutaneous T-Cell Lymphoma

Immunoregulatory Events in the Skin of Patients With Cutaneous T-Cell Lymphoma Abstract Background: Involved skin of patients with cutaneous T-cell lymphoma, mycosis fungoides type, contains an increased number of bone marrow—derived epidermal cells that express class II major histocompatibility complex molecules and an infiltrate of both activated non-malignant and malignant T cells. However, the mechanism by which the T cells achieve and maintain their activated state is uncertain. The aim of this article is, therefore, to review recent studies from the literature dealing with immunoregulatory events in patients with mycosis fungoides and Sézary syndrome. Observations: The nonmalignant T cells seem to be activated through the T-cell receptor by lesional epidermal CD1a+CD36+ macrophagelike cells that, on a cell per cell basis, are more potent antigen-presenting cells than normal CD1a+ Langerhans' cells present in uninvolved epidermis. In contrast, the malignant T cells have different activation requirements, because they can only be stimulated through antigen independent pathways, such as CDw60, CD28, and CD2. The malignant T cells produce T-helper (Th)-2 cytokines, and because interferon gamma (IFN-γ)-producing Thl cells are present in the early lesions of mycosis fungoides, nonmalignant tumor-infiltrating T cells may represent Thl cells. Because Thl cytokines counteract Th2 cytokines, tumor-infiltrating T cells may potentially have the capacity to downregulate the growth of the malignant cells. Conclusion: The balance between progression vs remission in mycosis fungoides is related to complex interactions between the malignant T cells, nonmalignant T cells, and hyperstimulative antigen-presenting cells present within the skin.(Arch Dermatol. 1996;132:554-561) References 1. Weinstock MA, Horm JW. Mycosis fungoides in the United States: increasing incidence and descriptive epidemiology . JAMA . 1988;260:42-46.Crossref 2. Sterry W, Mielke V. CD4+ cutaneous T-cell lymphomas show the phenotype of helper/inducer T cells (CD45RA-, CDw29+) . J Invest Dermatol. 1989;93: 413-416.Crossref 3. Ralfkiaer E, Wollf-Sneedorff A, Thomsen K, Geisler C, Vejlsgaard G. T-cell receptor gamma delta-positive peripheral T-cell lymphomas presenting in the skin: a clinical, histological and immunophenotypic study . Exp Dermatol. 1992; 1:31-36.Crossref 4. Fujiwara Y, Abe Y, Kuyama M, et al. CD8+ cutaneous T-cell lymphoma with pagetoid epidermotropism and angiocentric and angiodestructive infiltration . Arch Dermatol. 1990;126:801-804.Crossref 5. Ralfkiaer E. Immunohistological and genotypic studies of cutaneous malignant lymphomas compared with benign cutaneous conditions and cutaneous pseudolymphomas. Copenhagen, Denmark: University of Copenhagen; 1989. Thesis. 6. Slater DN. Cutaneous lymphoproliferative disorders: an assessment of recent investigative techniques . Br J Dermatol. 1991;124:309-323.Crossref 7. Ralfkiaer E, Wollf-Sneedorff A, Vejlsgaard G. Use of antibodies against the variable regions of the T-cell receptor alpha/beta heterodimer for the study of cutaneous T-cell lymphomas . Br J Dermatol. 1991;125:409-412.Crossref 8. Jensen JR, Thestrup-Pedersen K, Zachariae H, Sogaard H. Cyclosporin A therapy for mycosis fungoides . Arch Dermatol. 1987;123:160-163.Crossref 9. Thomsen K, Wantzin GL. Extracutaneous spreading with fatal outcome of mycosis fungoides in a patient treated with cyclosporin A: a word of caution . Dermatologica. 1987;174:236-238.Crossref 10. Crane GA, Variakojis D, Rosen ST, Sands AM, Roenigk HHJ. Cutaneous T-cell lymphoma in patients with human immunodeficiency virus infections . Arch Dermatol. 1991;127:989-994.Crossref 11. Penn I. Cancer in the immunosuppressed organ recipient . Transplant Proc. 1991;23:1771-1772. 12. Olsen EA, Delzell E, Jegasothy BV. Second malignancies in cutaneous T cell lymphoma . J Am Acad Dermatol. 1984;10:197-204.Crossref 13. MacKie RM. A monoclonal antibody technique to demonstrate an increase in Langerhans cells in cutaneous lesions of mycosis fungoides . Clin Exp Dermatol. 1982;7:43-47.Crossref 14. Fujita M, Horiguchi Y, Miyachi Y, Furukawa F, Kashihara-Sawami M, Imamura S. A subpopulation of Langerhans cells (CD1a+Lag-) increased in the dermis of plaque lesions of mycosis fungoides . J Am Acad Dermatol. 1991;25: 491-499.Crossref 15. Lisby S, Baadsgaard O, Cooper KD, Thomsen K, Wantzin GR. Expression of OKM5 antigen on epidermal cells in mycosis fungoides plaque stage . J Invest Dermatol. 1988;90:716-719.Crossref 16. Hansen ER, Baadsgaard O, Lisby S, Cooper KD, Thomsen K, Vejlsgaard GL. Cutaneous T-cell lymphoma lesional epidermal cells activate autologous CD4+ T lymphocytes: involvement of both CD1+OKM5+ and CD1+OKM5antigen-presenting cells . J Invest Dermatol. 1990;94:485-491.Crossref 17. Lisby S, Baadsgaard O, Cooper K, et al. Phenotype, ultrastructure, and function of CD1+DR+ epidermal cells that express CD36 (OKM5) in cutaneous T-cell lymphoma . Scand J Immunol. 1990;32:111-120.Crossref 18. Ralfkiaer E, Stein H, Bosq J, et al. Expression of a cell-cycle-associated nuclear antigen (Ki-67) in cutaneous lymphoid infiltrates . Am J Dermatopathol. 1986; 8:37-43.Crossref 19. Chadburn A, Inghirami G, Knowles DM. T-cell activation-associated antigen expression by neoplastic T-cells . Hematol Pathol. 1992;6:131-141. 20. Berger CL, Morrison S, Chu A, et al. Diagnosis of cutaneous T cell lymphoma by use of monoclonal antibodies reactive with tumor-associated antigens . J Clin Invest. 1982;70:1205-1215.Crossref 21. Sterry W, Pullmann H, Steigleder GK. Proliferation kinetics of the dermal infiltrate in cutaneous malignant lymphomas . Arch Dermatol Res. 1981;270: 285-290.Crossref 22. Depper JM, Leonard WJ, Kronke M, Waldmann TA, Greene WC. Augmented T cell growth factor receptor expression in HTLV-1-infected human leukemic T cells . J Immunol. 1984;133:1691-1695. 23. Waldmann TA. The structure, function, and expression of interleukin-2 receptors on normal and malignant lymphocytes . Science. 1986;232:727-732.Crossref 24. Oishi M, Johno M, Ono T, Honda M. Differences in IL-2 receptor levels between mycosis fungoides and cutaneous type adult T-cell leukemia/ lymphoma in the early stages of the disease . J Invest Dermatol. 1994;102: 710-715.Crossref 25. Cooper K, Meunier L, Ho V, et al. Activation of reactive versus malignant T cells in cutaneous T cell lymphoma: role of abnormal antigen presenting cells and T cell activating molecules . In: Lambert WC, ed. Basic Mechanisms of Physiological and Aberrant Lymphoproliferation in the Skin . New York, NY: Plenum Press; 1994. 26. Taylor RS, Baadsgaard O, Hammerberg C, Cooper KD. Hyperstimulatory CD1a+CD1b+CD36+ Langerhans cells are responsible for increased autologous T lymphocyte reactivity to lesional epidermal cells of patients with atopic dermatitis . J Immunol. 1991;147:3794-3802. 27. Walsh LJ, Seymour GJ, Powell RN. Modulation of class II (DR and DQ) antigen expression on gingival Langerhans cells in vitro by gamma interferon and prostaglandin E2 . J Oral Pathol. 1986;15:347-351.Crossref 28. Hansen E, Bang B, Larsen K, Vejlsgaard G, Baadsgaard O. In cutaneous T-cell lymphoma, class II MHC molecules on CD1+ antigen presenting cells are upregulated in involved compared to uninvolved epidermis . Br J Dermatol. 1994;131:780-788.Crossref 29. Tan RS, Butterworth CM, McLaughlin H, Malka S, Samman PD. Mycosis fungoides: a disease of antigen persistence . Br J Dermatol. 1974;91:607-616.Crossref 30. Tosca A, Linardopoulos S, Malliri A, Hatziolou E, Nicolaidou A, Spandidos DA. Implication of the ras and myc oncoproteins in the pathogenesis of mycosis fungoides . Anticancer Res. 1991;11:1433-1438. 31. Popovic M, Reitz MSJ, Sarngadharan MG, et al. The virus of Japanese adult T-cell leukaemia is a member of the human T-cell leukaemia virus group . Nature . 1982;300:63-66.Crossref 32. Wantzin GL, Thomsen K, Nissen NI, Saxinger C, Gallo RC. Occurrence of human T cell lymphotropic virus (type I) antibodies in cutaneous T cell lymphoma . J Am Acad Dermatol. 1986;15:598-602.Crossref 33. van der Loo EM, van Muijen GN, van Vloten WA, Beens W, Scheffer E, Meijer CJ. C-type virus-like particles specifically localized in Langerhans cells and related cells of skin and lymph nodes of patients with mycosis fungoides and Sezary's syndrome: a morphological and biochemical study . Virchows Arch B Cell Pathol. 1979;31:193-203.Crossref 34. Whittaker SJ, Luzzatto L. HTLV-1 provirus and mycosis fungoides . Science . 1993;259:1470.Crossref 35. Ho V, Baadsgaard O, Elder J, et al. Genotypic analysis of T-cell clones derived from cutaneous T-cell lymphoma lesions demonstrates selective growth of tumor infiltrating lymphocytes . J Invest Dermatol. 1990;95:4-8.Crossref 36. Charley M, McCoy JP, Deng JS, Jegasothy B. Anti-V region antibodies as almost clonotypic reagents for the study of cutaneous T cell lymphomas and leukemias . J Invest Dermatol. 1990;95:614-617.Crossref 37. Tokura Y, Heald PW, Yan SL, Edelson RL. Stimulation of cutaneous T-cell lymphoma cells with superantigenic staphylococcal toxins . J Invest Dermatol. 1992;98:33-37.Crossref 38. Tokura Y, Yagi H, Ohshima A, et al. Cutaneous colonization with staphylococci influences the disease activity of Sezary syndrome: a potential role for bacterial superantigens . Br J Dermatol. 1995;133:6-12.Crossref 39. Higgs JB, Zeldes W, Kozarsky K, et al. A novel pathway of human T lymphocyte activation: identification by a monoclonal antibody generated against a rheumatoid synovial T cell line . J Immunol. 1988;140:3758-3765. 40. Meuer SC, Hussey RE, Fabbi M, et al. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein . Cell. 1984;36:897-906.Crossref 41. Jenkins MK, Taylor PS, Norton SD, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells . J Immunol. 1991;147:2461-2466. 42. Selvaraj P, Plunkett ML, Dustin M, Sanders ME, Shaw S, Springer TA. The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3 . Nature . 1987;326:400-403.Crossref 43. Linsley PS, Clark EA, Ledbetter JA. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1 . Proc Natl Acad Sci U S A. 1990;87:5031-5035.Crossref 44. De Panfilis G, Manara GC, Ferrari C, Torresani C. Adhesion molecules on the plasma membrane of epidermal cells, III: keratinocytes and Langerhans cells constitutively express the lymphocyte function-associated antigen 3 . J Invest Dermatol. 1991;96:512-517.Crossref 45. Lee MG, Borkowski TA, Udey MC. Regulation of expression of B7 by murine Langerhans cells: a direct relationship between B7 mRNA levels and the level of surface expression of B7 by Langerhans cells . J Invest Dermatol. 1993; 101:883-886.Crossref 46. Simon J, Dietrich A, Mielke V, et al. Distribution of the B7 activation antigen and its ligand CD28 in T cell mediated skin diseases . J Invest Dermatol. 1993; 100:576. 47. Kniep B, Flegel WA, Northoff H, Rieber EP. CDw60 glycolipid antigens of human leukocytes: structural characterization and cellular distribution . Blood. 1993;82:1776-1786. 48. Springer TA. Adhesion receptors of the immune system . Nature . 1990;346: 425-434.Crossref 49. Hansen E, Vejlsgaard G, Cooper K, et al. Leukemic T cells from patients with cutaneous T-cell lymphoma demonstrate enhanced activation through CDw60, CD2, and CD28 relative to activation through the T-cell antigen receptor complex . J Invest Dermatol. 1993;100:667-673.Crossref 50. Kaltoft K, Bisballe S, Dyrberg T, Boel E, Rasmussen PB, Thestrup-Pedersen K. Establishment of two continuous T-cell strains from a single plaque of a patient with mycosis fungoides . In Vitro Cell Dev Biol. 1992;28A:161-167.Crossref 51. Kaltoft K, Bisballe S, Rasmussen HF, Thestrup-Pedersen K, Thomsen K, Sterry W. A continuous T-cell line from a patient with Sezary syndrome . Arch Dermatol Res. 1987;279:293-298.Crossref 52. Kaltoft K, Thestrup-Pedersen K, Jensen JR, Bisballe S, Zachariae H. Establishment of T and B cell lines from patients with mycosis fungoides . Br J Dermatol. 1984;111:303-308.Crossref 53. Gazdar AF, Carney DN, Bunn PA, et al. Mitogen requirements for the in vitro propagation of cutaneous T-cell lymphomas . Blood . 1980;55:409-417. 54. Braylan R, Variakojis D, Yachnin S. The Sezary syndrome lymphoid cell: abnormal surface properties and mitogen responsiveness . Br J Haematol. 1975; 31:553-564.Crossref 55. Burg G, Rodt H, Grosse-Wilde H, Braun-Falco O. Surface markers and mitogen response of cells harvested from cutaneous infiltrates in mycosis fungoides and Sézary's syndrome . J Invest Dermatol. 1978;70:257-259.Crossref 56. Abrams JT, Lessin SR, Ghosh SK, et al. Malignant and nonmalignant T cell lines from human T cell lymphotropic virus type I-negative patients with Sézary syndrome . J Immunol. 1991;146:1455-1462. 57. Abrams JT, Lessin S, Ghosh SK, et al. A clonal CD4-positive T-cell line established from the blood of a patient with Sézary syndrome . J Invest Dermatol. 1991;96:31-37.Crossref 58. Boehncke WH, Gerdes J, Wiese M, Kaltoft K, Sterry W. A majority of proliferating T cells in cutaneous malignant T cell lymphomas may lack the high affinity IL-2 receptor (CD25) . Arch Dermatol Res. 1993;285:127-130.Crossref 59. Starkebaum G, Loughran TPJ, Waters CA, Ruscetti FW. Establishment of an IL-2 independent, human T-cell line possessing only the p70 IL-2 receptor . Int J Cancer. 1991;49:246-253.Crossref 60. Yodoi J, Uchiyama T. Diseases associated with HTLV-I: virus, IL-2 receptor dysregulation and redox regulation . Immunol Today. 1992;13:405-411.Crossref 61. Dalloul A, Laroche L, Bagot M, et al. Interleukin-7 is a growth factor for Sézary lymphoma cells . J Clin Invest. 1992;90:1054-1060.Crossref 62. Foss F, Koc Y, Stetler-Stevenson M. Costimulation of cutaneous T-cell lymphoma cells by interleukin-7 and interleukin-2: potential autocrine or paracrine effectors in the Sézary syndrome . J Clin Oncol. 1994;12:326-335. 63. Frishman J, Long B, Knospe W, Gregory S, Plate J. Genes for interleukin 7 are transcribed in leukemic cell subsets of individuals with chronic lymphocytic leukemia . J Exp Med. 1993;177:955-964.Crossref 64. Rich B, Campos-Torres J, Tepper R, Moreadith R, Leder P. Cutaneous lymphoproliferation and lymphomas in interleukin 7 transgenic mice . J Exp Med. 1993;177:305-316.Crossref 65. Tron VA, Rosenthal D, Sauder DN. Epidermal interleukin-1 is increased in cutaneous T-cell lymphoma . J Invest Dermatol. 1988;90:378-381.Crossref 66. Hansen ER, Vejlsgaard GL, Lisby S, Heidenheim M, Baadsgaard O. Epidermal interleukin 1 alpha functional activity and interleukin 8 immunoreactivity are increased in patients with cutaneous T-cell lymphoma . J Invest Dermatol. 1991;97:818-823.Crossref 67. Dowd P, Hudspith B, Miller J. Release in vivo of interleukin-1 (IL-1) like activity by human skin . Clin Exp Immunol. 1987;67:606-610. 68. Zachariae C, Larsen CS, Kaltoft K, Deleuran B, Larsen CG, Thestrup-Pedersen K. Soluble IL2 receptor serum levels and epidermal cytokines in mycosis fungoides and related disorders . Acta Derm Venereol Stockh. 1991; 71:465-470. 69. Lawlor F, Smith NP, Camp RD, et al. Skin exudate levels of interleukin 6, interleukin 1 and other cytokines in mycosis fungoides . Br J Dermatol. 1990; 123:297-304.Crossref 70. Braverman I, Johnson C. Epidermal interleukin 1 alpha bioactivity is depressed in lesional skin of mycosis fungoides patients because of overutilization . J Invest Dermatol. 1993;100:570. 71. Miossec P, Yu CL, Ziff M. Lymphocyte chemotactic activity of human interleukin 1 . J Immunol. 1984;133:2007-2011. 72. Sica A, Matsushima K, Van Damme J, et al. IL-1 transcriptionally activates the neutrophil chemotactic factor/IL-8 gene in endothelial cells . Immunology. 1990;69:548-553. 73. Zachariae C, Jinquan T, Nielsen V, Kaltoft K, Thestrup-Pedersen K. Phenotypic determination of T-lymphocytes responding to chemotactic stimulation from fMLP, IL-8, human IL-10, and epidermal lymphocyte chemotactic factor . Arch Dermatol Res. 1992;284:333-338.Crossref 74. Wismer J, McKencie R, Sauder D. Interleukin-8 immunoreactivity in epidermis of cutaneous T-cell lymphoma patients . Lymphokine Cytokine Res. 1994; 13:21-27. 75. Sarris A, Esgleyes T, Crow M, et al. Cytokine loops involving interferongamma and IP-10, a cytokine chemotactic for CD4+ lymphocytes: an explanation for the epidermotropism of cutaneous T-cell lymphoma? J Am Soc Hematol. 1995;86:651-658. 76. Ishii T, Walsh LJ, Seymour GJ, Powell RN. Modulation of Langerhans cell surface antigen expression by recombinant cytokines . J Oral Pathol Med. 1990; 19:355-359.Crossref 77. Walsh LJ, Parry A, Scholes A, Seymour GJ. Modulation of CD4 antigen expression on human gingival Langerhans cells by gamma interferon . Clin Exp Immunol. 1987;70:379-385. 78. Berman B, Duncan MR, Smith B, Ziboh VA, Palladino M. Interferon enhancement of HLA-DR antigen expression on epidermal Langerhans cells . J Invest Dermatol. 1985;84:54-58.Crossref 79. Barker JN, Allen MH, MacDonald DM. The effect of in vivo interferon gamma on the distribution of LFA-1 and ICAM-1 in normal human skin . J Invest Dermatol. 1989;93:439-442.Crossref 80. Wayner E, Hoffstrom B, Pittlekow M. T Lymphocyte adhesion to keratinocytes: cooperative role for the integrin receptor alpha 3 beta 1 and E-cadherin . J Invest Dermatol. 1994;102:524. 81. Sterry W, Mielke V, Konter U, Kellner I, Boehncke WH. Role of beta 1-integrins in epidermotropism of malignant T cells . Am J Pathol. 1992;141:855-860. 82. Picker LJ, Michie SA, Rott LS, Butcher EC. A unique phenotype of skin-associated lymphocytes in humans: preferential expression of the HECA-452 epitope by benign and malignant T cells at cutaneous sites . Am J Pathol. 1990;136:1053-1068. 83. Vejlsgaard GL, Ralfkiaer E, Avnstorp C, Czajkowski M, Marlin SD, Rothlein R. Kinetics and characterization of intercellular adhesion molecule-1 (ICAM-1) expression on keratinocytes in various inflammatory skin lesions and malignant cutaneous lymphomas . J Am Acad Dermatol. 1989;20:782-790.Crossref 84. Nickoloff BJ, Griffiths CE, Baadsgaard O, Voorhees JJ, Hanson CA, Cooper KD. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sézary syndrome . JAMA. 1989;261:2217-2221.Crossref 85. Ansel J, Perry P, Brown J, et al. Cytokine modulation of keratinocyte cytokines . J Invest Dermatol. 1990;94:101S-107S.Crossref 86. Salgame P, Abrams JS, Clayberger C, et al. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones . Science. 1991;254: 279-282.Crossref 87. Powrie F, Coffman RL. Cytokine regulation of T-cell function: potential for therapeutic intervention . Immunol Today. 1993;14:270-274.Crossref 88. Saed G, Fivenson DP, Naidu Y, Nickoloff B. Mycosis fungoides exhibits a Th1-type cell-mediated cytokine profile whereas Sézary syndrome expresses a Th2-type profile . J Invest Dermatol. 1994;103:29-33.Crossref 89. Vowels BR, Cassin M, Vonderheid EC, Rook AH. Aberrant cytokine production by Sézary syndrome patients: cytokine secretion pattern resembles murine Th2 cells . J Invest Dermatol. 1992;99:90-94.Crossref 90. Vowels B, Lessin S, Cassin C, et al. Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma . J Invest Dermatol. 1994;103:669-673.Crossref 91. Rook A, Lessin S, Jaworsky C, Singh A, Vowels B. The immunopathogenesis of cutaneous T-cell lymphoma: abnormal cytokine production by Sézary T-cells . Arch Dermatol. 1993;129:486-489.Crossref 92. Reinhold U, Abken H, Kukel S, et al. Tumor-infiltrating lymphocytes isolated from a Ki-1-positive large cell lymphoma of the skin: phenotypic characterization and analysis of cytokine secretion . Cancer. 1991;68:2155-2160.Crossref 93. Wood NL, Kitces EN, Blaylock WK. Depressed lymphokine activated killer cell activity in mycosis fungoides: a possible marker for aggressive disease . Arch Dermatol. 1990;126:907-913.Crossref 94. D'Andrea A, Aste-Amezaga M, Valiante X, Ma M, Trinchieri K, Trinchieri G. Interleukin 10 inhibits human lymphocyte IFN-gamma production by suppressing natural killer cells stimulatory factor/interleukin-12 synthesis in accessory cells . J Exp Med. 1993;178:1041.Crossref 95. Meissner K, Loning T, Rehpenning W. Epidermal Langerhans cells and prognosis of patients with mycosis fungoides and Sézary syndrome . In Vivo. 1993; 7:277-280. 96. Hoppe R, Medeiros L, Warnke R, Wood G. CD8+ tumor infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides . J Am Acad Dermatol. 1995;32:448-453.Crossref 97. Salmeron A, Morita T, Seki H, Platsoucas C, Itoh K. Lymphokine production by human melanoma tumor infiltrating lymphocytes . Cancer Immunol Immunother. 1992;35:211-217.Crossref 98. Reinhold U, Pawelec G, Fratila A, Leippold S, Bauer R, Kreysel HW. Phenotypic and functional characterization of tumor infiltrating lymphocytes in mycosis fungoides: continuous growth of CD4+ CD45R+ T-cell clones with suppressor-inducer activity . J Invest Dermatol. 1990;94:304-309.Crossref 99. Fivenson D, Nickoloff B. Cell trafficking networks in cutaneous T cell lymphoma : In: Lambert WE, ed. Basic Mechanisms of Physiologic and Aberrant Lymphoproliferation in the Skin . New York, NY: Plenum Press; 1994:77-93. 100. Bergstresser P, Sullivan S, Streilein J, Tigelaar R. Origin and fuction of Thy-1+ dendritic epidermal cells in mice . J Invest Dermatol. 1985;85:85s-90s.Crossref 101. Kaplan EH, Rosen ST, Norris DB, Roenigk HHJ, Saks SR, Bunn PAJ. Phase II study of recombinant human interferon gamma for treatment of cutaneous T-cell lymphoma . J Natl Cancer Inst. 1990;82:208-212.Crossref 102. Vowels BR, Cassin M, Boufal MH, Walsh LJ, Rook AH. Extracorporeal photochemotherapy induces the production of tumor necrosis factor-alpha by monocytes: implications for the treatment of cutaneous T-cell lymphoma and systemic sclerosis . J Invest Dermatol. 1992;98:686-692.Crossref 103. Marolleau J, Baccard M, Flageul B, et al. High-dose recombinant interleukin-2 in advanced cutaneous T-cell lymphoma . Arch Dermatol. 1995;132: 574-579.Crossref 104. Nagatani T, Kin ST, Baba N, Miyamoto H, Nakajima H, Katoh Y. A case of cutaneous T cell lymphoma treated with recombinant interleukin 2 (rIL-2) . Acta Derm Venereol Stockh. 1988;68:504-508. 105. Kruse N, Tony HP, Sebald W. Conversion of human interleukin-4 into a high affinity antagonist by a single amino acid replacement . EMBO J. 1992;11: 3237-3244. 106. Trinchieri G. Interleukin-12 and its role in the generation of TH1 cells . Immunol Today . 1993;14:335-338.Crossref 107. Rook A, Kubin M, Cassin M. IL-12 reverses cytokine and immune abnormalities in Sézary syndrome . J Immunol. 1995;154:1491-1498. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Dermatology American Medical Association

Immunoregulatory Events in the Skin of Patients With Cutaneous T-Cell Lymphoma

Archives of Dermatology , Volume 132 (5) – May 1, 1996

Loading next page...
 
/lp/american-medical-association/immunoregulatory-events-in-the-skin-of-patients-with-cutaneous-t-cell-OdRcODFVRM

References (112)

Publisher
American Medical Association
Copyright
Copyright © 1996 American Medical Association. All Rights Reserved.
ISSN
0003-987X
eISSN
1538-3652
DOI
10.1001/archderm.1996.03890290088012
Publisher site
See Article on Publisher Site

Abstract

Abstract Background: Involved skin of patients with cutaneous T-cell lymphoma, mycosis fungoides type, contains an increased number of bone marrow—derived epidermal cells that express class II major histocompatibility complex molecules and an infiltrate of both activated non-malignant and malignant T cells. However, the mechanism by which the T cells achieve and maintain their activated state is uncertain. The aim of this article is, therefore, to review recent studies from the literature dealing with immunoregulatory events in patients with mycosis fungoides and Sézary syndrome. Observations: The nonmalignant T cells seem to be activated through the T-cell receptor by lesional epidermal CD1a+CD36+ macrophagelike cells that, on a cell per cell basis, are more potent antigen-presenting cells than normal CD1a+ Langerhans' cells present in uninvolved epidermis. In contrast, the malignant T cells have different activation requirements, because they can only be stimulated through antigen independent pathways, such as CDw60, CD28, and CD2. The malignant T cells produce T-helper (Th)-2 cytokines, and because interferon gamma (IFN-γ)-producing Thl cells are present in the early lesions of mycosis fungoides, nonmalignant tumor-infiltrating T cells may represent Thl cells. Because Thl cytokines counteract Th2 cytokines, tumor-infiltrating T cells may potentially have the capacity to downregulate the growth of the malignant cells. Conclusion: The balance between progression vs remission in mycosis fungoides is related to complex interactions between the malignant T cells, nonmalignant T cells, and hyperstimulative antigen-presenting cells present within the skin.(Arch Dermatol. 1996;132:554-561) References 1. Weinstock MA, Horm JW. Mycosis fungoides in the United States: increasing incidence and descriptive epidemiology . JAMA . 1988;260:42-46.Crossref 2. Sterry W, Mielke V. CD4+ cutaneous T-cell lymphomas show the phenotype of helper/inducer T cells (CD45RA-, CDw29+) . J Invest Dermatol. 1989;93: 413-416.Crossref 3. Ralfkiaer E, Wollf-Sneedorff A, Thomsen K, Geisler C, Vejlsgaard G. T-cell receptor gamma delta-positive peripheral T-cell lymphomas presenting in the skin: a clinical, histological and immunophenotypic study . Exp Dermatol. 1992; 1:31-36.Crossref 4. Fujiwara Y, Abe Y, Kuyama M, et al. CD8+ cutaneous T-cell lymphoma with pagetoid epidermotropism and angiocentric and angiodestructive infiltration . Arch Dermatol. 1990;126:801-804.Crossref 5. Ralfkiaer E. Immunohistological and genotypic studies of cutaneous malignant lymphomas compared with benign cutaneous conditions and cutaneous pseudolymphomas. Copenhagen, Denmark: University of Copenhagen; 1989. Thesis. 6. Slater DN. Cutaneous lymphoproliferative disorders: an assessment of recent investigative techniques . Br J Dermatol. 1991;124:309-323.Crossref 7. Ralfkiaer E, Wollf-Sneedorff A, Vejlsgaard G. Use of antibodies against the variable regions of the T-cell receptor alpha/beta heterodimer for the study of cutaneous T-cell lymphomas . Br J Dermatol. 1991;125:409-412.Crossref 8. Jensen JR, Thestrup-Pedersen K, Zachariae H, Sogaard H. Cyclosporin A therapy for mycosis fungoides . Arch Dermatol. 1987;123:160-163.Crossref 9. Thomsen K, Wantzin GL. Extracutaneous spreading with fatal outcome of mycosis fungoides in a patient treated with cyclosporin A: a word of caution . Dermatologica. 1987;174:236-238.Crossref 10. Crane GA, Variakojis D, Rosen ST, Sands AM, Roenigk HHJ. Cutaneous T-cell lymphoma in patients with human immunodeficiency virus infections . Arch Dermatol. 1991;127:989-994.Crossref 11. Penn I. Cancer in the immunosuppressed organ recipient . Transplant Proc. 1991;23:1771-1772. 12. Olsen EA, Delzell E, Jegasothy BV. Second malignancies in cutaneous T cell lymphoma . J Am Acad Dermatol. 1984;10:197-204.Crossref 13. MacKie RM. A monoclonal antibody technique to demonstrate an increase in Langerhans cells in cutaneous lesions of mycosis fungoides . Clin Exp Dermatol. 1982;7:43-47.Crossref 14. Fujita M, Horiguchi Y, Miyachi Y, Furukawa F, Kashihara-Sawami M, Imamura S. A subpopulation of Langerhans cells (CD1a+Lag-) increased in the dermis of plaque lesions of mycosis fungoides . J Am Acad Dermatol. 1991;25: 491-499.Crossref 15. Lisby S, Baadsgaard O, Cooper KD, Thomsen K, Wantzin GR. Expression of OKM5 antigen on epidermal cells in mycosis fungoides plaque stage . J Invest Dermatol. 1988;90:716-719.Crossref 16. Hansen ER, Baadsgaard O, Lisby S, Cooper KD, Thomsen K, Vejlsgaard GL. Cutaneous T-cell lymphoma lesional epidermal cells activate autologous CD4+ T lymphocytes: involvement of both CD1+OKM5+ and CD1+OKM5antigen-presenting cells . J Invest Dermatol. 1990;94:485-491.Crossref 17. Lisby S, Baadsgaard O, Cooper K, et al. Phenotype, ultrastructure, and function of CD1+DR+ epidermal cells that express CD36 (OKM5) in cutaneous T-cell lymphoma . Scand J Immunol. 1990;32:111-120.Crossref 18. Ralfkiaer E, Stein H, Bosq J, et al. Expression of a cell-cycle-associated nuclear antigen (Ki-67) in cutaneous lymphoid infiltrates . Am J Dermatopathol. 1986; 8:37-43.Crossref 19. Chadburn A, Inghirami G, Knowles DM. T-cell activation-associated antigen expression by neoplastic T-cells . Hematol Pathol. 1992;6:131-141. 20. Berger CL, Morrison S, Chu A, et al. Diagnosis of cutaneous T cell lymphoma by use of monoclonal antibodies reactive with tumor-associated antigens . J Clin Invest. 1982;70:1205-1215.Crossref 21. Sterry W, Pullmann H, Steigleder GK. Proliferation kinetics of the dermal infiltrate in cutaneous malignant lymphomas . Arch Dermatol Res. 1981;270: 285-290.Crossref 22. Depper JM, Leonard WJ, Kronke M, Waldmann TA, Greene WC. Augmented T cell growth factor receptor expression in HTLV-1-infected human leukemic T cells . J Immunol. 1984;133:1691-1695. 23. Waldmann TA. The structure, function, and expression of interleukin-2 receptors on normal and malignant lymphocytes . Science. 1986;232:727-732.Crossref 24. Oishi M, Johno M, Ono T, Honda M. Differences in IL-2 receptor levels between mycosis fungoides and cutaneous type adult T-cell leukemia/ lymphoma in the early stages of the disease . J Invest Dermatol. 1994;102: 710-715.Crossref 25. Cooper K, Meunier L, Ho V, et al. Activation of reactive versus malignant T cells in cutaneous T cell lymphoma: role of abnormal antigen presenting cells and T cell activating molecules . In: Lambert WC, ed. Basic Mechanisms of Physiological and Aberrant Lymphoproliferation in the Skin . New York, NY: Plenum Press; 1994. 26. Taylor RS, Baadsgaard O, Hammerberg C, Cooper KD. Hyperstimulatory CD1a+CD1b+CD36+ Langerhans cells are responsible for increased autologous T lymphocyte reactivity to lesional epidermal cells of patients with atopic dermatitis . J Immunol. 1991;147:3794-3802. 27. Walsh LJ, Seymour GJ, Powell RN. Modulation of class II (DR and DQ) antigen expression on gingival Langerhans cells in vitro by gamma interferon and prostaglandin E2 . J Oral Pathol. 1986;15:347-351.Crossref 28. Hansen E, Bang B, Larsen K, Vejlsgaard G, Baadsgaard O. In cutaneous T-cell lymphoma, class II MHC molecules on CD1+ antigen presenting cells are upregulated in involved compared to uninvolved epidermis . Br J Dermatol. 1994;131:780-788.Crossref 29. Tan RS, Butterworth CM, McLaughlin H, Malka S, Samman PD. Mycosis fungoides: a disease of antigen persistence . Br J Dermatol. 1974;91:607-616.Crossref 30. Tosca A, Linardopoulos S, Malliri A, Hatziolou E, Nicolaidou A, Spandidos DA. Implication of the ras and myc oncoproteins in the pathogenesis of mycosis fungoides . Anticancer Res. 1991;11:1433-1438. 31. Popovic M, Reitz MSJ, Sarngadharan MG, et al. The virus of Japanese adult T-cell leukaemia is a member of the human T-cell leukaemia virus group . Nature . 1982;300:63-66.Crossref 32. Wantzin GL, Thomsen K, Nissen NI, Saxinger C, Gallo RC. Occurrence of human T cell lymphotropic virus (type I) antibodies in cutaneous T cell lymphoma . J Am Acad Dermatol. 1986;15:598-602.Crossref 33. van der Loo EM, van Muijen GN, van Vloten WA, Beens W, Scheffer E, Meijer CJ. C-type virus-like particles specifically localized in Langerhans cells and related cells of skin and lymph nodes of patients with mycosis fungoides and Sezary's syndrome: a morphological and biochemical study . Virchows Arch B Cell Pathol. 1979;31:193-203.Crossref 34. Whittaker SJ, Luzzatto L. HTLV-1 provirus and mycosis fungoides . Science . 1993;259:1470.Crossref 35. Ho V, Baadsgaard O, Elder J, et al. Genotypic analysis of T-cell clones derived from cutaneous T-cell lymphoma lesions demonstrates selective growth of tumor infiltrating lymphocytes . J Invest Dermatol. 1990;95:4-8.Crossref 36. Charley M, McCoy JP, Deng JS, Jegasothy B. Anti-V region antibodies as almost clonotypic reagents for the study of cutaneous T cell lymphomas and leukemias . J Invest Dermatol. 1990;95:614-617.Crossref 37. Tokura Y, Heald PW, Yan SL, Edelson RL. Stimulation of cutaneous T-cell lymphoma cells with superantigenic staphylococcal toxins . J Invest Dermatol. 1992;98:33-37.Crossref 38. Tokura Y, Yagi H, Ohshima A, et al. Cutaneous colonization with staphylococci influences the disease activity of Sezary syndrome: a potential role for bacterial superantigens . Br J Dermatol. 1995;133:6-12.Crossref 39. Higgs JB, Zeldes W, Kozarsky K, et al. A novel pathway of human T lymphocyte activation: identification by a monoclonal antibody generated against a rheumatoid synovial T cell line . J Immunol. 1988;140:3758-3765. 40. Meuer SC, Hussey RE, Fabbi M, et al. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein . Cell. 1984;36:897-906.Crossref 41. Jenkins MK, Taylor PS, Norton SD, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells . J Immunol. 1991;147:2461-2466. 42. Selvaraj P, Plunkett ML, Dustin M, Sanders ME, Shaw S, Springer TA. The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3 . Nature . 1987;326:400-403.Crossref 43. Linsley PS, Clark EA, Ledbetter JA. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1 . Proc Natl Acad Sci U S A. 1990;87:5031-5035.Crossref 44. De Panfilis G, Manara GC, Ferrari C, Torresani C. Adhesion molecules on the plasma membrane of epidermal cells, III: keratinocytes and Langerhans cells constitutively express the lymphocyte function-associated antigen 3 . J Invest Dermatol. 1991;96:512-517.Crossref 45. Lee MG, Borkowski TA, Udey MC. Regulation of expression of B7 by murine Langerhans cells: a direct relationship between B7 mRNA levels and the level of surface expression of B7 by Langerhans cells . J Invest Dermatol. 1993; 101:883-886.Crossref 46. Simon J, Dietrich A, Mielke V, et al. Distribution of the B7 activation antigen and its ligand CD28 in T cell mediated skin diseases . J Invest Dermatol. 1993; 100:576. 47. Kniep B, Flegel WA, Northoff H, Rieber EP. CDw60 glycolipid antigens of human leukocytes: structural characterization and cellular distribution . Blood. 1993;82:1776-1786. 48. Springer TA. Adhesion receptors of the immune system . Nature . 1990;346: 425-434.Crossref 49. Hansen E, Vejlsgaard G, Cooper K, et al. Leukemic T cells from patients with cutaneous T-cell lymphoma demonstrate enhanced activation through CDw60, CD2, and CD28 relative to activation through the T-cell antigen receptor complex . J Invest Dermatol. 1993;100:667-673.Crossref 50. Kaltoft K, Bisballe S, Dyrberg T, Boel E, Rasmussen PB, Thestrup-Pedersen K. Establishment of two continuous T-cell strains from a single plaque of a patient with mycosis fungoides . In Vitro Cell Dev Biol. 1992;28A:161-167.Crossref 51. Kaltoft K, Bisballe S, Rasmussen HF, Thestrup-Pedersen K, Thomsen K, Sterry W. A continuous T-cell line from a patient with Sezary syndrome . Arch Dermatol Res. 1987;279:293-298.Crossref 52. Kaltoft K, Thestrup-Pedersen K, Jensen JR, Bisballe S, Zachariae H. Establishment of T and B cell lines from patients with mycosis fungoides . Br J Dermatol. 1984;111:303-308.Crossref 53. Gazdar AF, Carney DN, Bunn PA, et al. Mitogen requirements for the in vitro propagation of cutaneous T-cell lymphomas . Blood . 1980;55:409-417. 54. Braylan R, Variakojis D, Yachnin S. The Sezary syndrome lymphoid cell: abnormal surface properties and mitogen responsiveness . Br J Haematol. 1975; 31:553-564.Crossref 55. Burg G, Rodt H, Grosse-Wilde H, Braun-Falco O. Surface markers and mitogen response of cells harvested from cutaneous infiltrates in mycosis fungoides and Sézary's syndrome . J Invest Dermatol. 1978;70:257-259.Crossref 56. Abrams JT, Lessin SR, Ghosh SK, et al. Malignant and nonmalignant T cell lines from human T cell lymphotropic virus type I-negative patients with Sézary syndrome . J Immunol. 1991;146:1455-1462. 57. Abrams JT, Lessin S, Ghosh SK, et al. A clonal CD4-positive T-cell line established from the blood of a patient with Sézary syndrome . J Invest Dermatol. 1991;96:31-37.Crossref 58. Boehncke WH, Gerdes J, Wiese M, Kaltoft K, Sterry W. A majority of proliferating T cells in cutaneous malignant T cell lymphomas may lack the high affinity IL-2 receptor (CD25) . Arch Dermatol Res. 1993;285:127-130.Crossref 59. Starkebaum G, Loughran TPJ, Waters CA, Ruscetti FW. Establishment of an IL-2 independent, human T-cell line possessing only the p70 IL-2 receptor . Int J Cancer. 1991;49:246-253.Crossref 60. Yodoi J, Uchiyama T. Diseases associated with HTLV-I: virus, IL-2 receptor dysregulation and redox regulation . Immunol Today. 1992;13:405-411.Crossref 61. Dalloul A, Laroche L, Bagot M, et al. Interleukin-7 is a growth factor for Sézary lymphoma cells . J Clin Invest. 1992;90:1054-1060.Crossref 62. Foss F, Koc Y, Stetler-Stevenson M. Costimulation of cutaneous T-cell lymphoma cells by interleukin-7 and interleukin-2: potential autocrine or paracrine effectors in the Sézary syndrome . J Clin Oncol. 1994;12:326-335. 63. Frishman J, Long B, Knospe W, Gregory S, Plate J. Genes for interleukin 7 are transcribed in leukemic cell subsets of individuals with chronic lymphocytic leukemia . J Exp Med. 1993;177:955-964.Crossref 64. Rich B, Campos-Torres J, Tepper R, Moreadith R, Leder P. Cutaneous lymphoproliferation and lymphomas in interleukin 7 transgenic mice . J Exp Med. 1993;177:305-316.Crossref 65. Tron VA, Rosenthal D, Sauder DN. Epidermal interleukin-1 is increased in cutaneous T-cell lymphoma . J Invest Dermatol. 1988;90:378-381.Crossref 66. Hansen ER, Vejlsgaard GL, Lisby S, Heidenheim M, Baadsgaard O. Epidermal interleukin 1 alpha functional activity and interleukin 8 immunoreactivity are increased in patients with cutaneous T-cell lymphoma . J Invest Dermatol. 1991;97:818-823.Crossref 67. Dowd P, Hudspith B, Miller J. Release in vivo of interleukin-1 (IL-1) like activity by human skin . Clin Exp Immunol. 1987;67:606-610. 68. Zachariae C, Larsen CS, Kaltoft K, Deleuran B, Larsen CG, Thestrup-Pedersen K. Soluble IL2 receptor serum levels and epidermal cytokines in mycosis fungoides and related disorders . Acta Derm Venereol Stockh. 1991; 71:465-470. 69. Lawlor F, Smith NP, Camp RD, et al. Skin exudate levels of interleukin 6, interleukin 1 and other cytokines in mycosis fungoides . Br J Dermatol. 1990; 123:297-304.Crossref 70. Braverman I, Johnson C. Epidermal interleukin 1 alpha bioactivity is depressed in lesional skin of mycosis fungoides patients because of overutilization . J Invest Dermatol. 1993;100:570. 71. Miossec P, Yu CL, Ziff M. Lymphocyte chemotactic activity of human interleukin 1 . J Immunol. 1984;133:2007-2011. 72. Sica A, Matsushima K, Van Damme J, et al. IL-1 transcriptionally activates the neutrophil chemotactic factor/IL-8 gene in endothelial cells . Immunology. 1990;69:548-553. 73. Zachariae C, Jinquan T, Nielsen V, Kaltoft K, Thestrup-Pedersen K. Phenotypic determination of T-lymphocytes responding to chemotactic stimulation from fMLP, IL-8, human IL-10, and epidermal lymphocyte chemotactic factor . Arch Dermatol Res. 1992;284:333-338.Crossref 74. Wismer J, McKencie R, Sauder D. Interleukin-8 immunoreactivity in epidermis of cutaneous T-cell lymphoma patients . Lymphokine Cytokine Res. 1994; 13:21-27. 75. Sarris A, Esgleyes T, Crow M, et al. Cytokine loops involving interferongamma and IP-10, a cytokine chemotactic for CD4+ lymphocytes: an explanation for the epidermotropism of cutaneous T-cell lymphoma? J Am Soc Hematol. 1995;86:651-658. 76. Ishii T, Walsh LJ, Seymour GJ, Powell RN. Modulation of Langerhans cell surface antigen expression by recombinant cytokines . J Oral Pathol Med. 1990; 19:355-359.Crossref 77. Walsh LJ, Parry A, Scholes A, Seymour GJ. Modulation of CD4 antigen expression on human gingival Langerhans cells by gamma interferon . Clin Exp Immunol. 1987;70:379-385. 78. Berman B, Duncan MR, Smith B, Ziboh VA, Palladino M. Interferon enhancement of HLA-DR antigen expression on epidermal Langerhans cells . J Invest Dermatol. 1985;84:54-58.Crossref 79. Barker JN, Allen MH, MacDonald DM. The effect of in vivo interferon gamma on the distribution of LFA-1 and ICAM-1 in normal human skin . J Invest Dermatol. 1989;93:439-442.Crossref 80. Wayner E, Hoffstrom B, Pittlekow M. T Lymphocyte adhesion to keratinocytes: cooperative role for the integrin receptor alpha 3 beta 1 and E-cadherin . J Invest Dermatol. 1994;102:524. 81. Sterry W, Mielke V, Konter U, Kellner I, Boehncke WH. Role of beta 1-integrins in epidermotropism of malignant T cells . Am J Pathol. 1992;141:855-860. 82. Picker LJ, Michie SA, Rott LS, Butcher EC. A unique phenotype of skin-associated lymphocytes in humans: preferential expression of the HECA-452 epitope by benign and malignant T cells at cutaneous sites . Am J Pathol. 1990;136:1053-1068. 83. Vejlsgaard GL, Ralfkiaer E, Avnstorp C, Czajkowski M, Marlin SD, Rothlein R. Kinetics and characterization of intercellular adhesion molecule-1 (ICAM-1) expression on keratinocytes in various inflammatory skin lesions and malignant cutaneous lymphomas . J Am Acad Dermatol. 1989;20:782-790.Crossref 84. Nickoloff BJ, Griffiths CE, Baadsgaard O, Voorhees JJ, Hanson CA, Cooper KD. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sézary syndrome . JAMA. 1989;261:2217-2221.Crossref 85. Ansel J, Perry P, Brown J, et al. Cytokine modulation of keratinocyte cytokines . J Invest Dermatol. 1990;94:101S-107S.Crossref 86. Salgame P, Abrams JS, Clayberger C, et al. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones . Science. 1991;254: 279-282.Crossref 87. Powrie F, Coffman RL. Cytokine regulation of T-cell function: potential for therapeutic intervention . Immunol Today. 1993;14:270-274.Crossref 88. Saed G, Fivenson DP, Naidu Y, Nickoloff B. Mycosis fungoides exhibits a Th1-type cell-mediated cytokine profile whereas Sézary syndrome expresses a Th2-type profile . J Invest Dermatol. 1994;103:29-33.Crossref 89. Vowels BR, Cassin M, Vonderheid EC, Rook AH. Aberrant cytokine production by Sézary syndrome patients: cytokine secretion pattern resembles murine Th2 cells . J Invest Dermatol. 1992;99:90-94.Crossref 90. Vowels B, Lessin S, Cassin C, et al. Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma . J Invest Dermatol. 1994;103:669-673.Crossref 91. Rook A, Lessin S, Jaworsky C, Singh A, Vowels B. The immunopathogenesis of cutaneous T-cell lymphoma: abnormal cytokine production by Sézary T-cells . Arch Dermatol. 1993;129:486-489.Crossref 92. Reinhold U, Abken H, Kukel S, et al. Tumor-infiltrating lymphocytes isolated from a Ki-1-positive large cell lymphoma of the skin: phenotypic characterization and analysis of cytokine secretion . Cancer. 1991;68:2155-2160.Crossref 93. Wood NL, Kitces EN, Blaylock WK. Depressed lymphokine activated killer cell activity in mycosis fungoides: a possible marker for aggressive disease . Arch Dermatol. 1990;126:907-913.Crossref 94. D'Andrea A, Aste-Amezaga M, Valiante X, Ma M, Trinchieri K, Trinchieri G. Interleukin 10 inhibits human lymphocyte IFN-gamma production by suppressing natural killer cells stimulatory factor/interleukin-12 synthesis in accessory cells . J Exp Med. 1993;178:1041.Crossref 95. Meissner K, Loning T, Rehpenning W. Epidermal Langerhans cells and prognosis of patients with mycosis fungoides and Sézary syndrome . In Vivo. 1993; 7:277-280. 96. Hoppe R, Medeiros L, Warnke R, Wood G. CD8+ tumor infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides . J Am Acad Dermatol. 1995;32:448-453.Crossref 97. Salmeron A, Morita T, Seki H, Platsoucas C, Itoh K. Lymphokine production by human melanoma tumor infiltrating lymphocytes . Cancer Immunol Immunother. 1992;35:211-217.Crossref 98. Reinhold U, Pawelec G, Fratila A, Leippold S, Bauer R, Kreysel HW. Phenotypic and functional characterization of tumor infiltrating lymphocytes in mycosis fungoides: continuous growth of CD4+ CD45R+ T-cell clones with suppressor-inducer activity . J Invest Dermatol. 1990;94:304-309.Crossref 99. Fivenson D, Nickoloff B. Cell trafficking networks in cutaneous T cell lymphoma : In: Lambert WE, ed. Basic Mechanisms of Physiologic and Aberrant Lymphoproliferation in the Skin . New York, NY: Plenum Press; 1994:77-93. 100. Bergstresser P, Sullivan S, Streilein J, Tigelaar R. Origin and fuction of Thy-1+ dendritic epidermal cells in mice . J Invest Dermatol. 1985;85:85s-90s.Crossref 101. Kaplan EH, Rosen ST, Norris DB, Roenigk HHJ, Saks SR, Bunn PAJ. Phase II study of recombinant human interferon gamma for treatment of cutaneous T-cell lymphoma . J Natl Cancer Inst. 1990;82:208-212.Crossref 102. Vowels BR, Cassin M, Boufal MH, Walsh LJ, Rook AH. Extracorporeal photochemotherapy induces the production of tumor necrosis factor-alpha by monocytes: implications for the treatment of cutaneous T-cell lymphoma and systemic sclerosis . J Invest Dermatol. 1992;98:686-692.Crossref 103. Marolleau J, Baccard M, Flageul B, et al. High-dose recombinant interleukin-2 in advanced cutaneous T-cell lymphoma . Arch Dermatol. 1995;132: 574-579.Crossref 104. Nagatani T, Kin ST, Baba N, Miyamoto H, Nakajima H, Katoh Y. A case of cutaneous T cell lymphoma treated with recombinant interleukin 2 (rIL-2) . Acta Derm Venereol Stockh. 1988;68:504-508. 105. Kruse N, Tony HP, Sebald W. Conversion of human interleukin-4 into a high affinity antagonist by a single amino acid replacement . EMBO J. 1992;11: 3237-3244. 106. Trinchieri G. Interleukin-12 and its role in the generation of TH1 cells . Immunol Today . 1993;14:335-338.Crossref 107. Rook A, Kubin M, Cassin M. IL-12 reverses cytokine and immune abnormalities in Sézary syndrome . J Immunol. 1995;154:1491-1498.

Journal

Archives of DermatologyAmerican Medical Association

Published: May 1, 1996

There are no references for this article.