Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Recent Developments in the Pathogenesis of Allergic Contact Dermatitis

Recent Developments in the Pathogenesis of Allergic Contact Dermatitis Abstract • Allergic contact dermatitis is both an important clinical problem and a model system for lymphocyte-mediated pathologic changes. Elicitation of allergic contact dermatitis requires interaction of antigen with epidermal Langerhans cells, followed by migration of the Langerhans cells to the lymph nodes to present antigen to T lymphocytes. These activated T lymphocytes must then home to the antigen-exposed skin. Adhesion molecules such as LFA-1 and ICAM-1 have a role in this homing. Only a small proportion of the T lymphocytes in the skin lesion are specific for the inducing antigen. Studies of poison ivy (urushiol dermatitis) have determined this fraction to be less than one per 100 infiltrating lymphocytes. By a variety of amplification mechanisms, it is possible for this small number of antigen-specific T lymphocytes to induce the pathologic changes of allergic contact dermatitis. Improved understanding of this condition should result in increased knowledge of the pathogenesis of a variety of T lymphocyte—mediated skin conditions. (Arch Dermatol. 1991;127:1558-1563) References 1. Stingl G, Katz SI, Clement L, Green I, Shevach EM. Immunological functions of Ia-bearing epidermal Langerhans cells . J Immunol. 1978;121:2005-2013. 2. Stingl G, Gazze-Stingl LA, Aberer W, Wolff K. Antigen presentation by murine epidermal Langerhans cells and its alteration by ultraviolet B light . J Immunol. 1981;127:1707-1713. 3. Toews GB, Bergstresser PR, Streilein JW. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNCB . J Immunol. 1980;124:445-453. 4. Ashworth J, Brooker J, Breathnach SM. Effects of topical corticosteroid therapy on Langerhans cells antigen presenting function in human skin . Br JDermatol. 1988;118:457-470.Crossref 5. Crowley M, Inaba K, Steinman RM. Dendritic cells are the principal cells in mouse spleen bearing immunogenic fragments of foreign proteins . J Exp Med. 1990;172:383-386.Crossref 6. Girolomoni G, Simon JC, Bergstresser PR, Cruz PD. Freshly isolated spleen dendritic cells and epidermal Langerhans cells undergo similar phenotypic and functional changes during short term culture . J Immunol. 1990;145:2820-2826. 7. Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow . Nature. 1979;282:324-326.Crossref 8. Stingl G, Katz SI, Shevach EM, Wolff-Schreiner E, Green I. Detection of Ia antigens on Langerhans cells in guinea pig skin . J Immunol. 1978;120:570-578. 9. Stingl G, Tamaki K, Katz SI. Origin and function of epidermal Langerhans cells . Immunol Rev. 1980;53:149-174.Crossref 10. Chu A, Eisinger M, Lee JS, Takezaki S, Kung PC, Edelson RL. Immunoelectron microscopic identification of Langerhans cells using a new antigenic marker . J Invest Dermatol. 1982;78:177-180.Crossref 11. Caputo R, Peluchetti D, Monti M. Freeze-fracture of Langerhans granules: a comparative study . J Invest Dermatol. 1976;66:297-301.Crossref 12. Teunissen MBM, Wormmeester J, Krieg SR, et al. Human epidermal Langerhans cells undergo profound morphologic and phenotypical changes during in vitro culture . J Invest Dermatol. 1990;94:166-173.Crossref 13. Aiba S, Katz SI. Phenotypic and functional characteristics of in vivo activated Langerhans cells . J Immunol. 1990;145:2791-2796. 14. Bigby M, Vargas R, Sy MS. Production of hapten-specific T cell hybridomas and their use to study the effect of ultraviolet B irradiation on the development of contact hypersensitivity . J Immunol. 1989;143:3867-3872. 15. Kripke ML, Munn CG, Jeevan A, Tang JM, Bucana C. Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization . J Immunol. 1990;145:2833-2838. 16. Botham PA, Rattray NJ, Walsh ST, Riley EJ. Control of the immune response to contact sensitizing chemicals by cutaneous antigen-presenting cells . Br J Dermatol. 1987;117:1-9.Crossref 17. Hauser C, Saurat JH, Schmitt A, Jaunin F, Dayer JM. Interleukin 1 is present in normal human epidermis . J Immunol. 1986;136:3317-3321. 18. Kupper TS, Ballard DW, Chua AO, et al. Human keratinocytes contain mRNA indistinguishable from monocyte interleukin 1 alpha and beta mRNA . J Exp Med. 1986;164:2095-2100.Crossref 19. Dinarello CA. Interleukin-1 and the pathogenesis of the acute-phase response . N Engl J Med. 1984;311:1413-1418.Crossref 20. Parker KP, Sauder DN, Killian PL. Presence of IL-1 receptors on keratinocytes . Ann N Y Acad Sci. 1988;548:346-347.Crossref 21. Kupper TS, Horowitz M, Birchall N, et al. Hematopoietic, lymphopoietic and proinflammatory cytokines produced by human and murine keratinocytes . Ann N Y Acad Sci. 1988;548:262-270.Crossref 22. Kupper TS, Min K, Sehgal P, et al. Production of IL-6 by keratinocytes . Ann N Y Acad Sci. 1989;557:454-465.Crossref 23. Kupper TS. Production of cytokines by epithelial tissues . Am J Dermatopathol. 1989;11:69-73.Crossref 24. Kupper TS. The activated keratinocyte: a model for inducible cytokine production by non-bone marrow-derived cells in cutaneous inflammatory and immune responses . J Invest Dermatol. 1990;94( (suppl) ):146S-150S.Crossref 25. Jalkanen S, Nash GS, De los Toyos J, MacDermott RP, Butcher EC. Human lamina propria lymphocytes bear homing receptors and bind selectively to mucosal lymphoid high endothelium . Eur J Immunol. 1989;19:63-68.Crossref 26. Nakachy M, Berg EL, Streeter PR, Butcher EC. The mucosal vascular addressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes . Nature. 1989;337:179-181.Crossref 27. Chin YH, Rasmussen RA, Woodruff JJ, Easton TG. A monoclonal anti-Hebfpp antibody with specificity for lymphocyte surface molecules mediating adhesion to Peyer's patch high endothelium of the rat . J Immunol. 1986;136:2556-2561. 28. Gallatin WM, Weissman IL, Butcher EC. A cell surface molecule involved in organ specific homing of lymphocytes . Nature. 1983;304:30-34.Crossref 29. Streeter PR, Rouse BTN, Butcher EC. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes . J Cell Biol. 1988;107:1853-1862.Crossref 30. Tedder TF, Penta AC, Levine HB, Freedman AS. Expression of the human leukocyte adhesion molecule, LAM1: identity with the TQ1 and Leu-8 differentiation antigens . J Immunol. 1990;144:532-540. 31. Jalkanen S, Steere AC, Fox RI, Butcher EC. A distinct endothelial cell recognition system that controls lymphocyte traffic into inflamed synovium . Science. 1986;233:556-558.Crossref 32. Picker LJ, Michie SA, Rott LS, Butcher EC. A unique phenotype of skin-associated lymphocytes in humans . Am J Pathol. 1990;136:1053-1068. 33. Sanchez-Madrid F, Nagy JA, Robbins E, Simon P, Springer TA. A human leukocyte differentiation antigen family with distinct α-subunits and a common β-subunit . J Exp Med. 1983;58:1785-1803.Crossref 34. Rothlein R, Dustin ML, Marlin SD, Springer TA. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1 . J Immunol. 1986;137:1270-1274. 35. Dustin LM, Singer KH, Tuck DT, Springer TA. Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1) . J Exp Med. 1988;167:1323-1340.Crossref 36. Griffiths CEM, Voorhees JJ, Nickoloff BJ. Characterization of intercellular adhesion molecule-1 and HLA-DR expression in normal and inflamed skin: modulation by recombinant gamma interferon and tumor necrosis factor . J Am Acad Dermatol. 1989;20:617-629.Crossref 37. Nickoloff BJ, Lewinsohn DM, Butcher EC, Krensky AM, Clayberger C. Recombinant gamma interferon increases the binding of peripheral blood mononuclear leukocytes and a Leu-3 + T lymphocyte clone to cultured keratinocytes and to a malignant cutaneous squamous carcinoma cell line that is blocked by antibody against the LFA-1 molecule . J Invest Dermatol. 1988;90:17-22.Crossref 38. Chin YH, Falanga V, Streilein JW, Sackstein R. Lymphocyte recognition of psoriatic endothelium: evidence for a tissue-specific receptor/ligand interaction . J Invest Dermatol. 1989;93( (suppl) ):82S-87S.Crossref 39. Nickoloff BJ, Griffiths CEM. T lymphocytes and monocytes bind to keratinocytes in frozen sections of biopsy specimens of normal skin treated with gamma infection . J Am Acad Dermatol. 1989;20:736-743.Crossref 40. Griffiths CE, Nickoloff BJ. Keratinocyte intercellular adhesion molecule-1 (ICAM-1) expression precedes dermal T lymphocyte infiltration in allergic contact dermatitis (Rhus dermatitis) . Am J Pathol. 1989;135:1045-1053. 41. McCluskey RT, Benacerraf B, McCluskey JW. Studies on the specificity of the cellular infiltrate in delayed hypersensitivity reactions . J Immunol. 1963;90:466-477. 42. Kligman AM. Poison ivy (Rhus) dermatitis . Arch Dermatol. 1958;77:149-180.Crossref 43. Baer H, Watkins RC, Kurtz AP, Byck JS, Dawson CR. Delayed contact sensitivity to catechols, III: the relationship of side-chain length to sensitizing potency of catechols chemically related to the active principles of poison ivy . J Immunol. 1967;99:370-375. 44. Dunn IS, Liberato DJ, Castagnoli N, Byers VS. Contact sensitivity to urushiol: role of covalent bond formation . Cell Immunol. 1982;74:220-223.Crossref 45. Cantrell DA, Smith KA. Transient expression of interleukin 2 receptors: consequences for T-cell growth . J Exp Med. 1983;158:1895-1911.Crossref 46. Kalish RS. The use of human T-lymphocyte clones to study T-cell function in allergic contact dermatitis to urushiol . J Invest Dermatol. 1990;94( (suppl) ):108S-111S.Crossref 47. Kalish RS, Morimoto C. Quantitation and cloning of human urushiol specific peripheral blood T-cells: isolation of urushiol specific suppressor T-cells . J Invest Dermatol. 1989;92:46-52.Crossref 48. Kalish RS, Johnson KL. Enrichment and function of urushiol (poison ivy) specific T-lymphocytes in lesions of allergic contact dermatitis to urushiol . J Immunol. 1990;145:3706-3713. 49. Sinigaglia F, Scheidegger D, Garotta G, Scheper R, Pletscher M, Lanzavecchia A. Isolation and characterization of Ni-specifie T-cell clones from patients with Ni-contact dermatitis . J Immunol. 1985;135:3929-3932. 50. Löfström A, Wigzell H. Antigen specific human T-cell lines specific for cobalt chloride . Acta Derm Venereol (Stockh) . 1986;60:200-206. 51. Poulter LW, Seymour GJ, Duke O, Janossy G, Panayi G. Immunohistological analysis of delayed-type hypersensitivity in man . Cell Immunol. 1982;74:358-369.Crossref 52. Wood GS, Volterra AS, Abel EA, Nickoloff BJ, Adams RM. Allergic contact dermatitis: novel immunohistologic features . J Invest Dermatol. 1986;87:688-693.Crossref 53. Kalish RS, Morimoto C. Urushiol (poison ivy) triggered suppressor T-cell clone generated from peripheral blood . J Clin Invest. 1988;82:825-832.Crossref 54. Miller JFAP, Vadas MA, Whitelaw A, Gamble J. Role of major histocompatibility complex gene products in delayed-type hypersensitivity . Proc Natl Acad Sci U S A. 1976;73:2486-2490.Crossref 55. Sunday ME, Weinberger JZ, Benacerraf B, Dorf ME. Haptenspecific T-cell responses to 4-hydroxy-3-nitrophenyl acetyl IV: specificity of cutaneous sensitivity responses . J Immunol. 1980;125:1601-1605. 56. Gocinski BL, Tigelaar RE. Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion . J Immunol. 1990;144:4121-4128. 57. Basham TY, Nickoloff BJ, Merigan TC, Morhenn VB. Recombinant gamma interferon induces HLA-DR expression on cultured human keratinocytes . J Invest Dermatol. 1984;83:88-90.Crossref 58. Saito K, Taumura A, Narimatsu H, Tadakuma T, Nagashima M. Cloned auto-Ia-reactive T cells elicit lichen planus-like lesion in the skin of syngeneic mice . J Immunol. 1986;137:2485-2495. 59. Kalish RS. Nonspecifically activated human peripheral blood mononuclear cells are cytotoxic for human keratinocytes in vitro . J Immunol. 1989;142:74-80. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Dermatology American Medical Association

Recent Developments in the Pathogenesis of Allergic Contact Dermatitis

Archives of Dermatology , Volume 127 (10) – Oct 1, 1991

Loading next page...
 
/lp/american-medical-association/recent-developments-in-the-pathogenesis-of-allergic-contact-dermatitis-Boukj5SKx0

References (67)

Publisher
American Medical Association
Copyright
Copyright © 1991 American Medical Association. All Rights Reserved.
ISSN
0003-987X
eISSN
1538-3652
DOI
10.1001/archderm.1991.01680090122016
Publisher site
See Article on Publisher Site

Abstract

Abstract • Allergic contact dermatitis is both an important clinical problem and a model system for lymphocyte-mediated pathologic changes. Elicitation of allergic contact dermatitis requires interaction of antigen with epidermal Langerhans cells, followed by migration of the Langerhans cells to the lymph nodes to present antigen to T lymphocytes. These activated T lymphocytes must then home to the antigen-exposed skin. Adhesion molecules such as LFA-1 and ICAM-1 have a role in this homing. Only a small proportion of the T lymphocytes in the skin lesion are specific for the inducing antigen. Studies of poison ivy (urushiol dermatitis) have determined this fraction to be less than one per 100 infiltrating lymphocytes. By a variety of amplification mechanisms, it is possible for this small number of antigen-specific T lymphocytes to induce the pathologic changes of allergic contact dermatitis. Improved understanding of this condition should result in increased knowledge of the pathogenesis of a variety of T lymphocyte—mediated skin conditions. (Arch Dermatol. 1991;127:1558-1563) References 1. Stingl G, Katz SI, Clement L, Green I, Shevach EM. Immunological functions of Ia-bearing epidermal Langerhans cells . J Immunol. 1978;121:2005-2013. 2. Stingl G, Gazze-Stingl LA, Aberer W, Wolff K. Antigen presentation by murine epidermal Langerhans cells and its alteration by ultraviolet B light . J Immunol. 1981;127:1707-1713. 3. Toews GB, Bergstresser PR, Streilein JW. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNCB . J Immunol. 1980;124:445-453. 4. Ashworth J, Brooker J, Breathnach SM. Effects of topical corticosteroid therapy on Langerhans cells antigen presenting function in human skin . Br JDermatol. 1988;118:457-470.Crossref 5. Crowley M, Inaba K, Steinman RM. Dendritic cells are the principal cells in mouse spleen bearing immunogenic fragments of foreign proteins . J Exp Med. 1990;172:383-386.Crossref 6. Girolomoni G, Simon JC, Bergstresser PR, Cruz PD. Freshly isolated spleen dendritic cells and epidermal Langerhans cells undergo similar phenotypic and functional changes during short term culture . J Immunol. 1990;145:2820-2826. 7. Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow . Nature. 1979;282:324-326.Crossref 8. Stingl G, Katz SI, Shevach EM, Wolff-Schreiner E, Green I. Detection of Ia antigens on Langerhans cells in guinea pig skin . J Immunol. 1978;120:570-578. 9. Stingl G, Tamaki K, Katz SI. Origin and function of epidermal Langerhans cells . Immunol Rev. 1980;53:149-174.Crossref 10. Chu A, Eisinger M, Lee JS, Takezaki S, Kung PC, Edelson RL. Immunoelectron microscopic identification of Langerhans cells using a new antigenic marker . J Invest Dermatol. 1982;78:177-180.Crossref 11. Caputo R, Peluchetti D, Monti M. Freeze-fracture of Langerhans granules: a comparative study . J Invest Dermatol. 1976;66:297-301.Crossref 12. Teunissen MBM, Wormmeester J, Krieg SR, et al. Human epidermal Langerhans cells undergo profound morphologic and phenotypical changes during in vitro culture . J Invest Dermatol. 1990;94:166-173.Crossref 13. Aiba S, Katz SI. Phenotypic and functional characteristics of in vivo activated Langerhans cells . J Immunol. 1990;145:2791-2796. 14. Bigby M, Vargas R, Sy MS. Production of hapten-specific T cell hybridomas and their use to study the effect of ultraviolet B irradiation on the development of contact hypersensitivity . J Immunol. 1989;143:3867-3872. 15. Kripke ML, Munn CG, Jeevan A, Tang JM, Bucana C. Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization . J Immunol. 1990;145:2833-2838. 16. Botham PA, Rattray NJ, Walsh ST, Riley EJ. Control of the immune response to contact sensitizing chemicals by cutaneous antigen-presenting cells . Br J Dermatol. 1987;117:1-9.Crossref 17. Hauser C, Saurat JH, Schmitt A, Jaunin F, Dayer JM. Interleukin 1 is present in normal human epidermis . J Immunol. 1986;136:3317-3321. 18. Kupper TS, Ballard DW, Chua AO, et al. Human keratinocytes contain mRNA indistinguishable from monocyte interleukin 1 alpha and beta mRNA . J Exp Med. 1986;164:2095-2100.Crossref 19. Dinarello CA. Interleukin-1 and the pathogenesis of the acute-phase response . N Engl J Med. 1984;311:1413-1418.Crossref 20. Parker KP, Sauder DN, Killian PL. Presence of IL-1 receptors on keratinocytes . Ann N Y Acad Sci. 1988;548:346-347.Crossref 21. Kupper TS, Horowitz M, Birchall N, et al. Hematopoietic, lymphopoietic and proinflammatory cytokines produced by human and murine keratinocytes . Ann N Y Acad Sci. 1988;548:262-270.Crossref 22. Kupper TS, Min K, Sehgal P, et al. Production of IL-6 by keratinocytes . Ann N Y Acad Sci. 1989;557:454-465.Crossref 23. Kupper TS. Production of cytokines by epithelial tissues . Am J Dermatopathol. 1989;11:69-73.Crossref 24. Kupper TS. The activated keratinocyte: a model for inducible cytokine production by non-bone marrow-derived cells in cutaneous inflammatory and immune responses . J Invest Dermatol. 1990;94( (suppl) ):146S-150S.Crossref 25. Jalkanen S, Nash GS, De los Toyos J, MacDermott RP, Butcher EC. Human lamina propria lymphocytes bear homing receptors and bind selectively to mucosal lymphoid high endothelium . Eur J Immunol. 1989;19:63-68.Crossref 26. Nakachy M, Berg EL, Streeter PR, Butcher EC. The mucosal vascular addressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes . Nature. 1989;337:179-181.Crossref 27. Chin YH, Rasmussen RA, Woodruff JJ, Easton TG. A monoclonal anti-Hebfpp antibody with specificity for lymphocyte surface molecules mediating adhesion to Peyer's patch high endothelium of the rat . J Immunol. 1986;136:2556-2561. 28. Gallatin WM, Weissman IL, Butcher EC. A cell surface molecule involved in organ specific homing of lymphocytes . Nature. 1983;304:30-34.Crossref 29. Streeter PR, Rouse BTN, Butcher EC. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes . J Cell Biol. 1988;107:1853-1862.Crossref 30. Tedder TF, Penta AC, Levine HB, Freedman AS. Expression of the human leukocyte adhesion molecule, LAM1: identity with the TQ1 and Leu-8 differentiation antigens . J Immunol. 1990;144:532-540. 31. Jalkanen S, Steere AC, Fox RI, Butcher EC. A distinct endothelial cell recognition system that controls lymphocyte traffic into inflamed synovium . Science. 1986;233:556-558.Crossref 32. Picker LJ, Michie SA, Rott LS, Butcher EC. A unique phenotype of skin-associated lymphocytes in humans . Am J Pathol. 1990;136:1053-1068. 33. Sanchez-Madrid F, Nagy JA, Robbins E, Simon P, Springer TA. A human leukocyte differentiation antigen family with distinct α-subunits and a common β-subunit . J Exp Med. 1983;58:1785-1803.Crossref 34. Rothlein R, Dustin ML, Marlin SD, Springer TA. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1 . J Immunol. 1986;137:1270-1274. 35. Dustin LM, Singer KH, Tuck DT, Springer TA. Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1) . J Exp Med. 1988;167:1323-1340.Crossref 36. Griffiths CEM, Voorhees JJ, Nickoloff BJ. Characterization of intercellular adhesion molecule-1 and HLA-DR expression in normal and inflamed skin: modulation by recombinant gamma interferon and tumor necrosis factor . J Am Acad Dermatol. 1989;20:617-629.Crossref 37. Nickoloff BJ, Lewinsohn DM, Butcher EC, Krensky AM, Clayberger C. Recombinant gamma interferon increases the binding of peripheral blood mononuclear leukocytes and a Leu-3 + T lymphocyte clone to cultured keratinocytes and to a malignant cutaneous squamous carcinoma cell line that is blocked by antibody against the LFA-1 molecule . J Invest Dermatol. 1988;90:17-22.Crossref 38. Chin YH, Falanga V, Streilein JW, Sackstein R. Lymphocyte recognition of psoriatic endothelium: evidence for a tissue-specific receptor/ligand interaction . J Invest Dermatol. 1989;93( (suppl) ):82S-87S.Crossref 39. Nickoloff BJ, Griffiths CEM. T lymphocytes and monocytes bind to keratinocytes in frozen sections of biopsy specimens of normal skin treated with gamma infection . J Am Acad Dermatol. 1989;20:736-743.Crossref 40. Griffiths CE, Nickoloff BJ. Keratinocyte intercellular adhesion molecule-1 (ICAM-1) expression precedes dermal T lymphocyte infiltration in allergic contact dermatitis (Rhus dermatitis) . Am J Pathol. 1989;135:1045-1053. 41. McCluskey RT, Benacerraf B, McCluskey JW. Studies on the specificity of the cellular infiltrate in delayed hypersensitivity reactions . J Immunol. 1963;90:466-477. 42. Kligman AM. Poison ivy (Rhus) dermatitis . Arch Dermatol. 1958;77:149-180.Crossref 43. Baer H, Watkins RC, Kurtz AP, Byck JS, Dawson CR. Delayed contact sensitivity to catechols, III: the relationship of side-chain length to sensitizing potency of catechols chemically related to the active principles of poison ivy . J Immunol. 1967;99:370-375. 44. Dunn IS, Liberato DJ, Castagnoli N, Byers VS. Contact sensitivity to urushiol: role of covalent bond formation . Cell Immunol. 1982;74:220-223.Crossref 45. Cantrell DA, Smith KA. Transient expression of interleukin 2 receptors: consequences for T-cell growth . J Exp Med. 1983;158:1895-1911.Crossref 46. Kalish RS. The use of human T-lymphocyte clones to study T-cell function in allergic contact dermatitis to urushiol . J Invest Dermatol. 1990;94( (suppl) ):108S-111S.Crossref 47. Kalish RS, Morimoto C. Quantitation and cloning of human urushiol specific peripheral blood T-cells: isolation of urushiol specific suppressor T-cells . J Invest Dermatol. 1989;92:46-52.Crossref 48. Kalish RS, Johnson KL. Enrichment and function of urushiol (poison ivy) specific T-lymphocytes in lesions of allergic contact dermatitis to urushiol . J Immunol. 1990;145:3706-3713. 49. Sinigaglia F, Scheidegger D, Garotta G, Scheper R, Pletscher M, Lanzavecchia A. Isolation and characterization of Ni-specifie T-cell clones from patients with Ni-contact dermatitis . J Immunol. 1985;135:3929-3932. 50. Löfström A, Wigzell H. Antigen specific human T-cell lines specific for cobalt chloride . Acta Derm Venereol (Stockh) . 1986;60:200-206. 51. Poulter LW, Seymour GJ, Duke O, Janossy G, Panayi G. Immunohistological analysis of delayed-type hypersensitivity in man . Cell Immunol. 1982;74:358-369.Crossref 52. Wood GS, Volterra AS, Abel EA, Nickoloff BJ, Adams RM. Allergic contact dermatitis: novel immunohistologic features . J Invest Dermatol. 1986;87:688-693.Crossref 53. Kalish RS, Morimoto C. Urushiol (poison ivy) triggered suppressor T-cell clone generated from peripheral blood . J Clin Invest. 1988;82:825-832.Crossref 54. Miller JFAP, Vadas MA, Whitelaw A, Gamble J. Role of major histocompatibility complex gene products in delayed-type hypersensitivity . Proc Natl Acad Sci U S A. 1976;73:2486-2490.Crossref 55. Sunday ME, Weinberger JZ, Benacerraf B, Dorf ME. Haptenspecific T-cell responses to 4-hydroxy-3-nitrophenyl acetyl IV: specificity of cutaneous sensitivity responses . J Immunol. 1980;125:1601-1605. 56. Gocinski BL, Tigelaar RE. Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion . J Immunol. 1990;144:4121-4128. 57. Basham TY, Nickoloff BJ, Merigan TC, Morhenn VB. Recombinant gamma interferon induces HLA-DR expression on cultured human keratinocytes . J Invest Dermatol. 1984;83:88-90.Crossref 58. Saito K, Taumura A, Narimatsu H, Tadakuma T, Nagashima M. Cloned auto-Ia-reactive T cells elicit lichen planus-like lesion in the skin of syngeneic mice . J Immunol. 1986;137:2485-2495. 59. Kalish RS. Nonspecifically activated human peripheral blood mononuclear cells are cytotoxic for human keratinocytes in vitro . J Immunol. 1989;142:74-80.

Journal

Archives of DermatologyAmerican Medical Association

Published: Oct 1, 1991

There are no references for this article.