Home

"Frontiers in Energy"

Publisher:
Higher Education Press
Springer Journals
ISSN:
2095-1701
Scimago Journal Rank:
28
journal article
LitStream Collection
NOx and H2S formation in the reductive zone of air-staged combustion of pulverized blended coals

Cai, Jinzhi; Li, Dan; Chen, Denggao; Li, Zhenshan

2020 "Frontiers in Energy"

doi: 10.1007/s11708-020-0804-y

Low NOx combustion of blended coals is widely used in coal-fired boilers in China to control NOx emission; thus, it is necessary to understand the formation mechanism of NOx and H2S during the combustion of blended coals. This paper focused on the investigation of reductive gases in the formation of NOx and H2S in the reductive zone of blended coals during combustion. Experiments with Zhundong (ZD) and Commercial (GE) coal and their blends with different mixing ratios were conducted in a drop tube furnace at 1200°C–1400°C with an excessive air ratio of 0.6–1.2. The coal conversion and formation characteristics of CO, H2S, and NOx in the fuelrich zone were carefully studied under different experimental conditions for different blend ratios. Blending ZD into GE was found to increase not only the coal conversion but also the concentrations of CO and H2S as NO reduction accelerated. Both the CO and H2S concentrations inblended coal combustion increase with an increase in the combustion temperature and a decrease in the excessive air ratio. Based on accumulated experimental data, one interesting finding was that NO and H2S from blended coal combustion were almost directly dependent on the CO concentration, and the CO concentration of the blended coal combustion depended on the single char gasification conversion.Thus, CO, NOx, and H2S formation characteristics from blended coal combustion can be well predicted by single char gasification kinetics.
journal article
LitStream Collection
Effect of temperature on Lu’an bituminous char structure evolution in pyrolysis and combustion

Zhang, Yandi; Liu, Yinhe; Duan, Xiaoli; Zhou, Yao; Liu, Xiaoqian; Xu, Shijin

2020 "Frontiers in Energy"

doi: 10.1007/s11708-020-0805-x

In the process of pyrolysis and combustion of coal particles, coal structure evolution will be affected by the ash behavior, which will further affect the char reactivity, especially in the ash melting temperature zone. Lu’an bituminous char and ash samples were prepared at the N2 and air atmospheres respectively across ash melting temperature. A scanning electron microscope (SEM) was used to observe the morphology of char and ash. The specific surface area (SSA) analyzer and thermogravimetric analyzer were respectively adopted to obtain the pore structure characteristics of the coal chars and combustion parameters. Besides, an X-ray diffractometer (XRD) was applied to investigate the graphitization degree of coal chars prepared at different pyrolysis temperatures. The SEM results indicated that the number density and physical dimension of ash spheres exuded from the char particles both gradually increased with the increasing temperature, thus the coalescence of ash spheres could be observed obviously above 1100°C. Some flocculent materials appeared on the surface of the char particles at 1300°C, and it could be speculated that β-Si3N4 was generated in the pyrolysis process under N2. The SSA of the chars decreased with the increasing pyrolysis temperature. Inside the char particles, the micropore area and its proportion in the SSA also declined as the pyrolysis temperature increased. Furthermore, the constantly increasing pyrolysis temperature also caused the reactivity of char decrease, which is consistent with the results obtained by XRD. The higher combustion temperature resulted in the lower porosity and more fragments of the ash.
journal article
LitStream Collection
Effect of oil shale semi-coke on deposit mineralogy and morphology in the flue path of a CFB burning Zhundong lignite

Liu, Zhuo; Li, Jianbo; Zhu, Mingming; Lu, Xiaofeng; Zhang, Zhezi; Zhang, Dongke

2020 "Frontiers in Energy"

doi: 10.1007/s11708-020-0668-1

The effect of oil shale semi-coke (SC) on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed (CFB) which burns Zhundong lignite (ZD) was investigated. 10 wt% or 20 wt% SC was added to ZD, which were then combusted in the CFB furnace at 950°C. Two probes with vertical and horizontal orientations were installed in the flue duct to simulate ash deposition. Both windward and leeward ash deposits on probes (P1W, P1L, P2W and P2L) were analyzed by using a scanning electron microscopy with energy dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), an inductively coupled plasma optical emission spectrometry ICP-OES, and a particle size analyzer. When ZD was burned alone, the P1W deposit was comprised of agglomerates (< 30 µm) enriched in CaSO4 and Na2SiO3, incurring significant sintering. The P1L and P2W deposits, however, were of both discrete and agglomerated particles in similar mineral phases but with coarser sizes. The P2L deposit was mainly fine ash particles where Na2SiO3 and Na2SO4 were absent. As SC was added, the agglomerates in both P1W and P1L decreased. Moreover, SiO2 and Ca/Na aluminosilicates dominated the mineral phases whereas Na2SiO3 and Na2SO4 disappeared, showing a decrease in deposit stickiness. Likewise, the P2W deposit was found less spread on the probe, decreasing its deposition propensity. Na-bearing minerals turned into (Na, K)(Si3Al)O8 and (Ca, Na)(Si, Al)4O8 in the P2W deposit. Moreover, Na in the deposits decreased from 32 mg/g to less than 15 mg/g as SC presented. The addition of SC would therefore help alleviate the propensity of ash deposition in the flue path in the CFB combustion of ZD.
journal article
LitStream Collection
An experimental study on ignition of single coal particles at low oxygen concentrations

Yang, Wantao; Zhang, Yang; Hu, Lilin; Lyu, Junfu; Zhang, Hai

2020 "Frontiers in Energy"

doi: 10.1007/s11708-020-0692-1

An experimental study on the ignition of single coal particles at low oxygen concentrations (XO2<21%\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}} < 21\% $$\end{document}) was conducted using a tube furnace. The surface temperature (Ts) and the center temperature (Tc) of the coal particles were obtained from the images taken by an infrared camera and thermocouples respectively. The ignition processes were recorded by a high-speed camera at different XO2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}}$$\end{document} values and furnace temperatures Tw. Compared with literature experimental data obtained at a high XO2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}}$$\end{document} value, the ignition delay time τi decreases more rapidly as XO2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}}$$\end{document} increases at the low XO2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}}$$\end{document} region. The responses of Ts and Tc to the variation of XO2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}}$$\end{document} are different: Ts decreases while Tc remains nearly constant with increasing XO2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}}$$\end{document} at a low XO2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}}$$\end{document} value. In addition, τi is less sensitive to Tw while the ignition temperature Ti is more sensitive to Tw at a low XO2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}}$$\end{document} value than in air. Observations of the position of flame front evolution illustrate that the ignition of a coal particle may change from a homogeneous mode to a heterogeneous or combined ignition mode as XO2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}}$$\end{document} decreases. At a low XO2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${X_{{{\rm{O}}_2}}}$$\end{document} value, buoyancy plays a more significant role in sweeping away the released volatiles during the ignition process.
journal article
LitStream Collection
A critical review of ash slagging mechanisms and viscosity measurement for low-rank coal and bio-slags

Alam, Md Tanvir; Dai, Baiqian; Wu, Xiaojiang; Hoadley, Andrew; Zhang, Lian

2020 "Frontiers in Energy"

doi: 10.1007/s11708-020-0807-8

Gasification or combustion of coal and biomass is the most important form of power generation today. However, the use of coal/biomass at high temperatures has an inherent problem related to the ash generated. The formation of ash leads to a problematic phenomenon called slagging. Slagging is the accumulation of molten ash on the walls of the furnace, gasifier, or boiler and is detrimental as it reduces the heat transfer rate, and the combustion/gasification rate of unburnt carbon, causes mechanical failure, high-temperature corrosion and on occasions, superheater explosions. To improve the gasifier/combustor facility, it is very important to understand the key ash properties, slag characteristics, viscosity and critical viscosity temperature. This paper reviews the content, compositions, and melting characteristics of ashes in differently ranked coal and biomass, and discusses the formation mechanism, characteristics, and structure of slag. In particular, this paper focuses on low-rank coal and biomass that have been receiving increased attention recently. Besides, it reviews the available methodologies and formulae for slag viscosity measurement/prediction and summarizes the current limitations and potential applications. Moreover, it discusses the slagging behavior of different ranks of coal and biomass by examining the applicability of the current viscosity measurement methods to these fuels, and the viscosity prediction models and factors that affect the slag viscosity. This review shows that the existing viscosity models and slagging indices can only satisfactorily predict the viscosity and slagging propensity of high-rank coals but cannot predict the slagging propensity and slag viscosity of low-rank coal, and especially biomass ashes, even if they are limited to a particular composition only. Thus, there is a critical need for the development of an index, or a model or even a measurement method, which can predict/measure the slagging propensity and slag viscosity correctly for all low-rank coal and biomass ashes.
journal article
LitStream Collection
Influence of mass air flow ratio on gas-particle flow characteristics of a swirl burner in a 29 MW pulverized coal boiler

Yan, Rong; Chen, Zhichao; Guan, Shuo; Li, Zhengqi

2020 "Frontiers in Energy"

doi: 10.1007/s11708-020-0697-9

In a gas/particle two-phase test facility, a three-component particle-dynamics anemometer was used to measure the characteristics of gas/particle two-phase flows in a 29 megawatt (MW) pulverized coal industrial boiler equipped with a new type of swirling pulverized coal burner. The distributions of three-dimensional gas/particle velocity, particle volume flux, and particle size distribution were measured under different working conditions. The mean axial velocity and the particle volume flux in the central region of the burner outlet were found to be negative. This indicated that a central recirculation zone was formed in the center of the burner. In the central recirculation zone, the absolute value of the mean axial velocity and the particle volume flux increased when the external secondary air volume increased. The size of the central reflux zone remained stable when the air volume ratio changed. Along the direction of the jet, the peak value formed by the tertiary air gradually moved toward the center of the burner. This tertiary air was mixed with the peak value formed by the air in the adiabatic combustion chamber after the cross-section of x/d = 0.7. Large particles were concentrated near the wall area, and the particle size in the recirculation zone was small.
journal article
LitStream Collection
Effects of pyrolyzed semi-char blend ratio on coal combustion and pollution emission in a 0.35 MW pulverized coal-fired furnace

Yan, Yonghong; Sun, Liutao; Peng, Zhengkang; Qi, Hongliang; Liu, Li; Sun, Rui

2020 "Frontiers in Energy"

doi: 10.1007/s11708-020-0678-z

The effects of blend ratio on combustion and pollution emission characteristics for co-combustion of Shenmu pyrolyzed semi-char (SC), i.e., residuals of the coal pyrolysis chemical processing, and Shenhua bituminous coal (SB) were investigated in a 0.35 MW pilot-scale pulverized coal-fired furnace. The gas temperature and concentrations of gaseous species (O2, CO, CO2, NOx and HCN) were measured in the primary combustion zone at different blend ratios. It is found that the standoff distance of ignition changes monotonically from 132 to 384 mm with the increase in pyrolyzed semi-char blend ratio. The effects on the combustion characteristics may be neglected when the blend ratio is less than 30%. Above the 30% blend ratio, the increase in blend ratio postpones ignition in the primary stage and lowers the burnout rate. With the blend ratio increasing, NOx emission at the furnace exit is smallest for the 30% blend ratio and highest for the 100% SC. The NOx concentration was 425 mg/m3 at 6% O2 and char burnout was 76.23% for the 45% blend ratio. The above results indicate that the change of standoff distance and NOx emission were not obvious when the blend ratio of semi-char is less than 45%, and carbon burnout changed a little at all blend ratios. The goal of this study is to achieve blending combustion with a large proportion of semi-char without great changes in combustion characteristics. So, an SC blend ratio of no more than 45% can be suitable for the burning of semi-char.
journal article
LitStream Collection
Experimental studies of ash film fractions based on measurement of cenospheres geometry in pulverized coal combustion

Liu, Siqi; Niu, Yanqing; Wen, Liping; Liang, Yang; Yan, Bokang; Wang, Denghui; Hui, Shi’en

2020 "Frontiers in Energy"

doi: 10.1007/s11708-020-0806-9

In pulverized coal particle combustion, part of the ash forms the ash film and exerts an inhibitory influence on combustion by impeding the diffusion of oxygen to the encapsulated char core, while part of the ash diffuses toward the char core. Despite the considerable ash effects on combustion, the fraction of ash film still remains unclear. However, the research of the properties of cenospheres can be an appropriate choice for the fraction determination, being aware that the formation of cenospheres is based on the model of coal particles with the visco-plastic ash film and a solid core. The fraction of ash film X is the ratio of the measuring mass of ash film and the total ash in coal particle. In this paper, the Huangling bituminous coal with different sizes was burnt in a drop-tube furnace at 1273, 1473, and 1673 K with air as oxidizer. A scanning electron microscope (SEM) and cross-section analysis have been used to study the geometry of the collected cenospheres and the effects of combustion parameters on the fraction of ash film. The results show that the ash film fraction increases with increasing temperature and carbon conversion ratio but decreases with larger sizes of coal particles. The high fraction of ash film provides a reasonable explanation for the extinction event at the late burnout stage. The varied values of ash film fractions under different conditions during the dynamic combustion process are necessary for further development of kinetic models.
journal article
LitStream Collection
Modeling of single coal particle combustion in O2/N2 and O2/CO2 atmospheres under fluidized bed condition

Yang, Xiehe; Zhang, Yang; Liu, Daoyin; Zhang, Jiansheng; Zhang, Hai; Lyu, Junfu; Yue, Guangxi

2020 "Frontiers in Energy"

doi: 10.1007/s11708-020-0685-0

A one-dimensional transient single coal particle combustion model was proposed to investigate the characteristics of single coal particle combustion in both O2/N2 and O2/CO2 atmospheres under the fluidized bed combustion condition. The model accounted for the fuel devolatilization, moisture evaporation, heterogeneous reaction as well as homogeneous reactions integrated with the heat and mass transfer from the fluidized bed environment to the coal particle. This model was validated by comparing the model prediction with the experimental results in the literature, and a satisfactory agreement between modeling and experiments proved the reliability of the model. The modeling results demonstrated that the carbon conversion rate of a single coal particle (diameter 6 to 8 mm) under fluidized bed conditions (bed temperature 1088 K) in an O2/CO2 (30:70) atmosphere was promoted by the gasification reaction, which was considerably greater than that in the O2/N2 (30:70) atmosphere. In addition, the surface and center temperatures of the particle evolved similarly, no matter it is under the O2/N2 condition or the O2/CO2 condition. A further analysis indicated that similar trends of the temperature evolution under different atmospheres were caused by the fact that the strong heat transfer under the fluidized bed condition overwhelmingly dominated the temperature evolution rather than the heat release of the chemical reaction.
journal article
LitStream Collection
Mercury emission and adsorption characteristics of fly ash in PC and CFB boilers

Jia, Li; Fan, Baoguo; Zheng, Xianrong; Qiao, Xiaolei; Yao, Yuxing; Zhao, Rui; Guo, Jinrong; Jin, Yan

2020 "Frontiers in Energy"

doi: 10.1007/s11708-020-0682-3

The mercury emission was obtained by measuring the mercury contents in flue gas and solid samples in pulverized coal (PC) and circulating fluidized bed (CFB) utility boilers. The relationship was obtained between the mercury emission and adsorption characteristics of fly ash. The parameters included unburned carbon content, particle size, and pore structure of fly ash. The results showed that the majority of mercury released to the atmosphere with the flue gas in PC boiler, while the mercury was enriched in fly ash and captured by the precipitator in CFB boiler. The coal factor was proposed to characterize the impact of coal property on mercury emissions in this paper. As the coal factor increased, the mercury emission to the atmosphere decreased. It was also found that the mercury content of fly ash in the CFB boiler was ten times higher than that in the PC boiler. As the unburned carbon content increased, the mercury adsorbed increased. The capacity of adsorbing mercury by fly ash was directly related to the particle size. The particle size corresponding to the highest content of mercury, which was about 560 ng/g, appeared in the range from 77.5 to 106 µm. The content of mesoporous (4–6 nm) of the fly ash in the particle size of 77.5–106 µm was the highest, which was beneficial to adsorbing the mercury. The specific surface area played a more significant role than specific pore volume in the mercury adsorption process.
Articles per page
Browse All Journals

Related Journals: