Home

Footer

DeepDyve Logo
FacebookTwitter

Features

  • Search and discover articles on DeepDyve, PubMed, and Google Scholar
  • Read the full-text of open access and premium content
  • Organize articles with folders and bookmarks
  • Collaborate on and share articles and folders

Info

  • Pricing
  • Enterprise Plans
  • Browse Journals & Topics
  • About DeepDyve

Help

  • Help
  • Publishers
  • Contact Us

Popular Topics

  • COVID-19
  • Climate Change
  • Biopharmaceuticals
Terms |
Privacy |
Security |
Help |
Enterprise Plans |
Contact Us

Select data courtesy of the U.S. National Library of Medicine.

© 2023 DeepDyve, Inc. All rights reserved.

Computational Methods and Function Theory

Subject:
Computational Theory and Mathematics
Publisher:
Springer Berlin Heidelberg —
Springer Journals
ISSN:
1617-9447
Scimago Journal Rank:
15

2023

Volume OnlineFirst
SeptemberAugustJulyJuneMayFebruaryJanuary
Volume 23
Issue 3 (Sep)Issue 2 (Jun)Issue 1 (Mar)

2022

Volume OnlineFirst
DecemberOctoberSeptemberAugustJulyMarch
Volume 22
Issue 4 (Dec)Issue 3 (Sep)Issue 2 (Jun)Issue 1 (Mar)

2021

Volume 21
Issue 4 (Dec)Issue 3 (Sep)Issue 1 (Mar)

2020

Volume 21
Issue 2 (Jul)Issue 1 (May)
Volume 20
Issue 3-4 (Nov)Issue 2 (Jun)Issue 1 (Mar)

2019

Volume 2020
Issue 1901 (Jan)
Volume 19
Issue 4 (Sep)Issue 3 (May)Issue 2 (Apr)Issue 1 (Jan)

2018

Volume 19
Issue 1 (Dec)
Volume 18
Issue 4 (Jun)Issue 3 (Feb)Issue 1 (Feb)

2017

Volume 18
Issue 3 (Nov)Issue 2 (Oct)Issue 1 (Oct)
Volume 17
Issue 4 (May)Issue 3 (Jan)Issue 1 (Feb)

2016

Volume 17
Issue 3 (Nov)Issue 2 (Oct)Issue 1 (Jun)
Volume 16
Issue 4 (Apr)Issue 3 (Jan)Issue 1 (Jan)

2015

Volume 2020
Issue 1506 (Jun)
Volume 16
Issue 3 (Oct)Issue 2 (Aug)Issue 1 (May)
Volume 15
Issue 4 (May)Issue 3 (Jan)Issue 2 (Jan)Issue 1 (Jan)

2014

Volume 16
Issue 1 (Dec)
Volume 15
Issue 2 (Dec)Issue 1 (Sep)
Volume 14
Issue 4 (Jun)Issue 3 (Mar)Issue 1 (Apr)

2013

Volume 14
Issue 3 (Sep)Issue 1 (Dec)
Volume 13
Issue 4 (Sep)Issue 3 (Aug)Issue 2 (Jun)Issue 1 (Feb)
Volume 11
Issue 2 (Apr)Issue 1 (Mar)
Volume 6
Issue 2 (Mar)Issue 1 (Mar)
Volume 5
Issue 2 (Mar)Issue 1 (Mar)
Volume 4
Issue 2 (Mar)Issue 1 (Mar)
Volume 3
Issue 2 (Mar)Issue 1 (Mar)
Volume 2
Issue 2 (Apr)Issue 1 (Mar)
Volume 1
Issue 2 (Mar)Issue 1 (Mar)

2012

Volume 12
Issue 2 (Aug)Issue 1 (Jan)

2011

Volume 12
Issue 1 (Nov)
Volume 11
Issue 1 (Feb)

2010

Volume 11
Issue 1 (Dec)
Volume 10
Issue 2 (Aug)Issue 1 (Mar)

2009

Volume 10
Issue 1 (Sep)
Volume 9
Issue 2 (Mar)Issue 1 (Apr)
Volume 8
Issue 1 (Jul)

2008

Volume 9
Issue 2 (Dec)Issue 1 (Sep)
Volume 8
Issue 2 (May)Issue 1 (May)

2007

Volume 8
Issue 2 (Sep)Issue 1 (Mar)
Volume 7
Issue 2 (Oct)Issue 1 (Jan)

2006

Volume 7
Issue 1 (Oct)

2005

Volume 5
Issue 1 (Aug)
Volume 4
Issue 2 (May)

2004

Volume 3
Issue 2 (Mar)Issue 1 (Mar)
Volume 2
Issue 2 (Jan)

2003

Volume 2
Issue 1 (Jun)
journal article
LitStream Collection
Solutions to Difference Equations Have Few Defects

Ingram, Patrick

2023 Computational Methods and Function Theory

doi: 10.1007/s40315-022-00437-5

We establish a strong form of Nevanlinna’s Second Main Theorem for solutions to difference equations f(z+1)=R(z,f(z)),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} f(z+1)=R(z, f(z)), \end{aligned}$$\end{document}with the coefficients of R growing slowly relative to f, and degw(R(z,w))≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\deg _w(R(z, w))\ge 2$$\end{document}.
journal article
LitStream Collection
On Entire Function ep(z)∫0zβ(t)e-p(t)dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{p(z)}\int _0^{z}\beta (t)e^{-p(t)}dt$$\end{document} with Applications to Tumura–Clunie Equations and Complex Dynamics

Zhang, Yueyang

2023 Computational Methods and Function Theory

doi: 10.1007/s40315-022-00446-4

Let p(z) be a non-constant polynomial and β(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\beta (z)$$\end{document} be a small entire function of ep(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$e^{p(z)}$$\end{document} in the sense of Nevanlinna. We describe the growth behavior of the entire function H(z):=ep(z)∫0zβ(t)e-p(t)dt\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H(z):=e^{p(z)}\int _0^{z}\beta (t)e^{-p(t)}dt$$\end{document} in the complex plane C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {C}$$\end{document}. As an application, we find entire solutions of the Tumura–Clunie type differential equation f(z)n+P(z,f)=b1(z)ep1(z)+b2(z)ep2(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f(z)^n+P(z,f)=b_1(z)e^{p_1(z)}+b_2(z)e^{p_2(z)}$$\end{document}, where b1(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$b_1(z)$$\end{document} and b2(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$b_2(z)$$\end{document} are non-zero polynomials, p1(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_1(z)$$\end{document} and p2(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_2(z)$$\end{document} are two polynomials of the same degree k≥1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k\ge 1$$\end{document} and P(z, f) is a differential polynomial in f of degree at most n-1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n-1$$\end{document} with meromorphic functions of order less than k as coefficients. These results allow us to determine all solutions with relatively few zeros of the second-order differential equation f′′-[b1(z)ep1(z)+b2(z)ep2(z)+b3(z)]f=0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f''-[b_1(z)e^{p_1(z)}+b_2(z)e^{p_2(z)}+b_3(z)]f=0$$\end{document}, where b3(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$b_3(z)$$\end{document} is a polynomial. We also prove a theorem on certain first-order linear differential equations related to complex dynamics.
journal article
LitStream Collection
Quasisymmetry and Quasihyperbolicity of Mappings on John Domains

Huang, Manzi; Rasila, Antti; Wang, Xiantao; Zhou, Qingshan

2023 Computational Methods and Function Theory

doi: 10.1007/s40315-022-00440-w

Suppose that G is a proper subdomain of Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb R}^n$$\end{document}, f:G→Y\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f:G\rightarrow Y$$\end{document} is a homeomorphism with a continuous extension to the inner boundary of G, i.e., the boundary of G with respect to the corresponding inner metric, where (Y,d′)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(Y,d')$$\end{document} stands for a locally compact, non-complete and rectifiably connected metric space, and that G′=f(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G'=f(G)$$\end{document} is uniform in Y. The purpose of this paper is to prove that G is a John domain if f is M-quasihyperbolic in G and the restriction of f on the inner boundary of G is η\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\eta $$\end{document}-quasisymmetric with respect to the inner metric.
journal article
Open Access Collection
Triangular Ratio Metric Under Quasiconformal Mappings in Sector Domains

Rainio, Oona; Vuorinen, Matti

2023 Computational Methods and Function Theory

doi: 10.1007/s40315-022-00447-3

The hyperbolic metric and different hyperbolic type metrics are studied in open sector domains of the complex plane. Several sharp inequalities are proven for them. Our main result describes the behavior of the triangular ratio metric under quasiconformal maps from one sector onto another one.
journal article
Open Access Collection
Groups of Rotations of Euclidean and Hyperbolic Spaces

Beardon, A. F.; Minda, D.

2023 Computational Methods and Function Theory

doi: 10.1007/s40315-022-00436-6

In both the Euclidean plane R2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^2$$\end{document} and the hyperbolic plane H2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {H}}^2$$\end{document}, a non-trivial group of rotations has a unique fixed point. We compare groups of rotations of the three-dimensional spaces R3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^3$$\end{document} and H3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {H}}^3$$\end{document}, and in each case we discuss the existence of a (possibly non-unique) common fixed point of the elements in such a group.
journal article
LitStream Collection
Landau–Bloch Type Theorems for Certain Subclasses for Polyharmonic Mappings

Luo, Xi; Liu, Ming-Sheng

2023 Computational Methods and Function Theory

doi: 10.1007/s40315-022-00441-9

In this paper, we first establish a Landau–Bloch type theorem for certain bounded polyharmonic mappings, which improves upon a result given by Bai et al. (Complex Anal Oper Theory, 13(2):321–340, 2019). Then, we establish three new versions of Landau–Bloch type theorems for polyharmonic mappings, and obtain several sharp results. Finally, we provide four bi-Lipschitz theorems for these subclasses of polyharmonic mappings.
journal article
LitStream Collection
Painlevé III and V Types Differential Difference Equations

Du, Yishuo; Zhang, Jilong

2023 Computational Methods and Function Theory

doi: 10.1007/s40315-022-00442-8

In this paper, we show that if the equations w(z+1)w(z-1)+a(z)w′(z)w(z)=P(z,w(z))Q(z,w(z)),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} w(z+1)w(z-1)+a(z)\frac{w'(z)}{w(z)}=\frac{P(z,w(z))}{Q(z,w(z))}, \end{aligned}$$\end{document}and (w(z)w(z+1)-1)(w(z)w(z-1)-1)+a(z)w′(z)w(z)=P(z,w(z))Q(z,w(z)),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} (w(z)w(z+1)-1)(w(z)w(z-1)-1)+a(z)\frac{w'(z)}{w(z)}=\frac{P(z,w(z))}{Q(z,w(z))}, \end{aligned}$$\end{document}where a(z) is rational, P(z, w) and Q(z, w) are coprime polynomials of w(z) with rational functions coefficients, have a non-rational meromorphic solution with hyper-order less than one, then the degrees of the numerator and denominator on the right sides of the equations have to meet certain conditions.
journal article
LitStream Collection
Topological Angles and Freely Quasiconformal Mappings in Real Banach Spaces

Yang, Zhiqiang; Zhou, Qingshan

2023 Computational Methods and Function Theory

doi: 10.1007/s40315-022-00445-5

In this paper, several characterizations for both quasisymmetric mappings and freely quasiconformal mappings in real Banach spaces are established. Also, we get a characterization for a freely quasiconformal mapping to be quasisymmetric. All these characterizations consist of inequalities in terms of the point measure and the inner measure of topological angles, which were introduced by Agard and Gehring (Proc Lond Math Soc 3(14a):1–21, 1965). Also, we construct two examples which show that certain conditions in the obtained characterizations can not be removed.
journal article
LitStream Collection
Existence of Quasiconformal Maps with Maximal Stretching on Any Given Countable Set

Bongers, Tyler; Gill, James T.

2023 Computational Methods and Function Theory

doi: 10.1007/s40315-022-00453-5

Quasiconformal maps are homeomorphisms with useful local distortion inequalities; infinitesimally, they map balls to ellipsoids with bounded eccentricity. This leads to a number of useful regularity properties, including quantitative Hölder continuity estimates; on the other hand, one can use the radial stretches to characterize the extremizers for Hölder continuity. In this work, given any bounded countable set in Rd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {R}^d$$\end{document}, we will construct an example of a K-quasiconformal map which exhibits the maximum stretching at each point of the set. This will provide an example of a quasiconformal map that exhibits the worst-case regularity on a surprisingly large set, and generalizes constructions from the planar setting into Rd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {R}^d$$\end{document}.
journal article
LitStream Collection
Asymptotic Values of Entire Functions of Infinite Order

Hinkkanen, Aimo; Miles, Joseph

2023 Computational Methods and Function Theory

doi: 10.1007/s40315-022-00464-2

We prove that there exists an entire function for which every complex number is an asymptotic value and whose growth is arbitrarily slow subject only to the necessary condition that the function is of infinite order.
Browse All Journals

Related Journals: