Bohr Phenomena for Holomorphic Mappings with Values in Several Complex VariablesHamada, Hidetaka; Honda, Tatsuhiro
2024 Results in Mathematics
doi: 10.1007/s00025-024-02269-2
In the first part of this paper, we study several Bohr radii for holomorphic mappings with values in the unit polydisc UN\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {U}^N$$\end{document} in CN\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {C}^{N}$$\end{document}. In particular, we obtain the new Bohr radius rk,m∗∗∗\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r_{k,m}^{***}$$\end{document} for holomorphic mappings with lacunary series. Further, we show that when m≥1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$m\ge 1$$\end{document}, rk,m∗∗∗\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r_{k,m}^{***}$$\end{document} is asymptotically sharp as N→∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N\rightarrow \infty $$\end{document}. Note that when m≥1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$m\ge 1$$\end{document}, rk,m∗∗∗\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r_{k,m}^{***}$$\end{document} is completely different from the cases with values in the unit disc U\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {U}$$\end{document} and in the complex Hilbert balls with higher dimensions. In the second part of this paper, we obtain the Bohr type inequality for holomorphic mappings F with values in the unit ball of a JB∗\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$^*$$\end{document}-triple which is a generalization of that for holomorphic mappings F with values in the unit ball of a complex Banach space of the form F(z)=f(z)z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$F(z)=f(z)z$$\end{document}, where f is a C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {C}$$\end{document}-valued holomorphic function.
Dynamics of Weighted Backward Shifts on Certain Analytic Function SpacesDas, Bibhash Kumar; Mundayadan, Aneesh
2024 Results in Mathematics
doi: 10.1007/s00025-024-02279-0
We introduce the Banach spaces ℓa,bp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\ell ^p_{a,b}$$\end{document} and c0,a,b\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$c_{0,a,b}$$\end{document}, of analytic functions on the unit disc, having normalized Schauder bases consisting of polynomials of the form fn(z)=(an+bnz)zn,n≥0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f_n(z)=(a_n+b_nz)z^n, ~~n\ge 0$$\end{document}, where {fn}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\{f_n\}$$\end{document} is assumed to be equivalent to the standard basis in ℓp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\ell ^p$$\end{document} and c0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$c_0$$\end{document}, respectively. We study the weighted backward shift operator Bw\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B_w$$\end{document} on these spaces, and obtain necessary and sufficient conditions for Bw\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B_w$$\end{document} to be bounded, and prove that, under some mild assumptions on {an}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\{a_n\}$$\end{document} and {bn}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\{b_n\}$$\end{document}, the operator Bw\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B_w$$\end{document} is similar to a compact perturbation of a weighted backward shift on the sequence spaces ℓp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\ell ^p$$\end{document} or c0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$c_0$$\end{document}. Further, we study the hypercyclicity, mixing, and chaos of Bw\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B_w$$\end{document}, and establish the existence of hypercyclic subspaces for Bw\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B_w$$\end{document} by computing its essential spectrum. Similar results are obtained for a function of Bw\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B_w$$\end{document} on ℓa,bp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\ell ^p_{a,b}$$\end{document} and c0,a,b\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$c_{0,a,b}$$\end{document}.
Lower and Upper Bounds for the Generalized Csiszár f-divergence Operator MappingDragomir, Silvestru Sever; Nikoufar, Ismail
2024 Results in Mathematics
doi: 10.1007/s00025-024-02266-5
Let A={A1,...,An}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\textbf{A}}=\{A_{1},...,A_{n}\}$$\end{document} and B={B1,...,Bn}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\textbf{B}}=\{B_{1},...,B_{n}\}$$\end{document} be two finite sequences of strictly positive operators on a Hilbert space H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ {\mathcal {H}}$$\end{document} and f, h:I→R\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$h:{\mathbb {I}}\rightarrow {\mathbb {R}}$$\end{document} continuous functions with h>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$h>0$$\end{document}.. We consider the generalized Csiszár f-divergence operator mapping defined by IfΔh(A,B)=∑i=1nPfΔh(Ai,Bi),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\textbf{I}}_{f\Delta h}({\textbf{A}},{\textbf{B}})=\sum _{i=1}^{n}P_{f\Delta h}(A_{i},B_{i}), \end{aligned}$$\end{document}where PfΔh(A,B):=h(A)1/2f(h(A)-1/2Bh(A)-1/2)h(A)1/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} P_{f\Delta h}(A,B):=h(A)^{1/2}f(h(A)^{-1/2}Bh(A)^{-1/2})h(A)^{1/2} \end{aligned}$$\end{document}is introduced for every strictly positive operator A and every self-adjoint operator B, where the spectrum of the operators A,A-1/2BA-1/2andh(A)-1/2Bh(A)-1/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} A, A^{-1/2}BA^{-1/2}\text { and }h(A)^{-1/2}Bh(A)^{-1/2} \end{aligned}$$\end{document}are contained in the closed interval I\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {I}}$$\end{document}. In this paper we obtain some lower and upper bounds for IfΔh(A,B)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\textbf{I}}_{f\Delta h}({\textbf{A}},{\textbf{B}})$$\end{document} with applications to the geometric operator mean and the relative operator entropy. We verify the information monotonicity for the Csisz ár f-divergence operator mapping and the generalized Csiszár f-divergence operator mapping.
m-symmetric Operators with Elementary Operator EntriesDuggal, B. P.; Kim, I. H.
2024 Results in Mathematics
doi: 10.1007/s00025-024-02272-7
Given Banach space operators A, B, let δA,B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta _{A,B}$$\end{document} denote the generalised derivation δ(X)=(LA-RB)(X)=AX-XB\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta (X)=(L_{A}-R_{B})(X)=AX-XB$$\end{document} and ▵A,B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\triangle _{A,B}$$\end{document} the length two elementary operator ▵A,B(X)=(I-LARB)(X)=X-AXB\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\triangle _{A,B}(X)=(I-L_AR_B)(X)=X-AXB$$\end{document}. This note considers the structure of m-symmetric operators δ▵A1,B1,▵A2,B2m(I)=(L▵A1,B1-R▵A2,B2)m(I)=0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta ^m_{\triangle _{A_1,B_1},\triangle _{A_2,B_2}}(I)=(L_{\triangle _{A_1,B_1}} - R_{\triangle _{A_2,B_2}})^m(I)=0$$\end{document}. It is seen that there exist scalars λi∈σa(B1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda _i\in \sigma _a(B_1)$$\end{document}, 1≤i≤2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$1\le i\le 2$$\end{document}, such that δλ1A1,λ2A2m(I)=0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta ^m_{\lambda _1 A_1,\lambda _2 A_2}(I)=0$$\end{document}. Translated to Hilbert space operators A and B this implies that if δ▵A∗,B∗,▵A,Bm(I)=0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta ^m_{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0$$\end{document}, then there exists λ¯∈σa(B∗)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\overline{\lambda }}\in \sigma _a(B^*)$$\end{document} such that δ(λA)∗,λAm(I)=0=δλ¯B,λB∗m(I)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta ^m_{(\lambda A)^*,\lambda A}(I)=0=\delta ^m_{{\overline{\lambda }}B,\lambda B^*}(I)$$\end{document}. We prove that the operator δ▵A∗,B∗,▵A,Bm\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta ^m_{\triangle _{A^*,B^*},\triangle _{A,B}}$$\end{document} is compact if and only if (i) there exists a real number α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha $$\end{document} and finite sequnces (i) {aj}j=1n⊆σ(A)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\{a_j\}_{j=1}^n\subseteq \sigma (A)$$\end{document}, {bj}j=1n⊆σ(B)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\{b_j\}_{j=1}^n\subseteq \sigma (B)$$\end{document} such that ajbj=1-α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a_jb_j=1-\alpha $$\end{document}, 1≤j≤n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$1\le j\le n$$\end{document}; (ii) decompositions ⊕j=1nHj\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\oplus _{j=1}^n {\mathcal {H}}_j$$\end{document} and ⊕j=1nHJ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\oplus _{j=1}^n{\texttt {H}_J}$$\end{document} of H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {H}}$$\end{document} such that ⊕j=1n(A-ajI)|Hj\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\oplus _{j=1}^n{(A-a_j I)|_{\ H_j}}$$\end{document} and ⊕j=1n(B-bjI)|Hj\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\oplus _{j=1}^n{(B-b_j I)|_{\texttt {H}_j}}$$\end{document} are nilpotent. If δ▵A∗,B∗,▵A,Bm(I)=0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta ^{m}_{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0$$\end{document} implies δ▵A∗,B∗,▵A,B(I)=0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta _{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0$$\end{document}, then A and B satisfy a (Putnam-Fuglede type) commutativity theorem; conversely, a sufficient condition for δ▵A∗,B∗,▵A,Bm(I)=0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta ^{m}_{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0$$\end{document} to imply δ▵A∗,B∗,▵A,B(I)=0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta _{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0$$\end{document} is that λA\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\lambda }A$$\end{document} and λ¯B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\overline{\lambda }}B$$\end{document} satisfy the commutativity property for scalars lambda¯∈σa(B∗)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline{lambda} \in \sigma _a(B^*)$$\end{document}. An analogous result is seen to hold for the operators ▵δA∗,B∗,δA,Bm\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\triangle ^m_{\delta _{A^*,B^*},\delta _{A,B}}$$\end{document} and ▵δA∗,B∗,δA,Bm(I)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\triangle ^m_{\delta _{A^*,B^*},\delta _{A,B}}(I)$$\end{document}. Perturbation by commuting nilpotents is considered.
The Growth Order of the Optimal Constants inTurán-Erőd Type Inequalities in Lq(K,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q(K,\mu )$$\end{document}Glazyrina, Polina Yu.; Goryacheva, Yuliya S.; Révész, Szilárd Gy.
2024 Results in Mathematics
doi: 10.1007/s00025-024-02225-0
In 1939 Turán raised the question about lower estimations of the maximum norm of the derivatives of a polynomial p of maximum norm 1 on the compact set K of the complex plain under the normalization condition that the zeroes of p in question all lie in K. Turán studied the problem for the interval I and the unit disk D and found that with n:=degp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n:= \deg p$$\end{document} tending to infinity, the precise growth order of the minimal possible derivative norm (oscillation order) is n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\sqrt{n}$$\end{document} for I and n for D. Erőd continued the work of Turán considering other domains. Finally, in 2006, Halász and Révész proved that the growth of the minimal possible maximal norm of the derivative is of order n for all compact convex domains. Although Turán himself gave comments about the above oscillation question in Lq\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^q$$\end{document}norms, till recently results were known only for D and I. Recently, we have found order n lower estimations for several general classes of compact convex domains, and proved that in Lq\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^q$$\end{document} norm the oscillation order is at least n/logn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n/\log n$$\end{document} for all compact convex domains. In the present paper we prove that the oscillation order is not greater than n for all compact (not necessarily convex) domains K and Lq\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^q$$\end{document}norm with respect to any measure supported on more than two points on K.
Half-Dimensional Immersions into the Para-Complex Projective Space and Ruh–Vilms Type TheoremsDorfmeister, Josef F.; Hildebrand, Roland; Kobayashi, Shimpei
2024 Results in Mathematics
doi: 10.1007/s00025-024-02271-8
In this paper we study isometric immersions f:Mn→C′Pn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f:M^n \rightarrow {\mathbb {C}^{\prime }}\!P^n $$\end{document} of an n-dimensional pseudo-Riemannian manifold Mn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$M^n$$\end{document} into the n-dimensional para-complex projective space C′Pn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {C}^{\prime }}\!P^n $$\end{document}. We study the immersion f by means of a lift f\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathfrak {f}$$\end{document} of f into a quadric hypersurface in Sn+12n+1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S^{2n+1}_{n+1}$$\end{document}. We find the frame equations and compatibility conditions. We specialize these results to dimension n=2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n = 2$$\end{document} and a definite metric on M2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$M^2$$\end{document} in isothermal coordinates and consider the special cases of Lagrangian surface immersions and minimal surface immersions. We characterize surface immersions with special properties in terms of primitive harmonicity of the Gauss maps.