Stability of time-periodic flow with laminar boundary-layer separationBoiko, A. V.;Dovgal, A. V.;Sorokin, A. M.
2018 Thermophysics and Aeromechanics
doi: 10.1134/S0869864318050037
Abstract The influence of the low-frequency modulation of flow behind a rectangular backward-facing step on the amplitude characteristics of disturbances in the separated laminar boundary layer has been studied. The experimental data were obtained by the method of hot-wire anemometry in a wind tunnel at a low subsonic velocity. Response of the separated flow to the long-wave oscillations generated by a local source of disturbances on the surface of the experimental model was clarified. The low-frequency nonstationarity of the separation region leads to a growth of velocity fluctuations in the separated boundary layer, which dominate the laminar-turbulent transition and the state of the flow in the near-wall region.
Effectiveness of blowing for improving the high-speed trains aerodynamicsShkvar, E. O.;Jamea, A.;E, S.-J.;Cai, J.-C.;Kryzhanovskyi, A. S.
2018 Thermophysics and Aeromechanics
doi: 10.1134/S0869864318050049
Abstract The promising method of drag reduction with the use of micro-blowing through the streamlined surface has been proposed for its use to the external surface of high-speed train. The advantages of high-speed train as an object of micro-blowing application are introduced. The corresponding RANS-based mathematical model is elaborated, and the computations of the external flow around a long train body are performed. Predictions of the turbulent boundary layer over penetrable surface with different modes of micro-blowing have been presented and analyzed. The developed modifications of mathematical model of turbulence have been used to take into account the micro-blowing influence in the inner region of turbulent boundary layer. The obtained results of parametric analysis of drag reduction depending on the area of permeable sections, intensity of micro-blowing, and high-speed train length have been analyzed. In particular, the dependence between drag reduction effect and length of train body with realized micro-blowing as well as its intensity is established. Realization of micro-blowing with blowing velocity just 0.25 % of train speed (V = 100 m/s) on the 70 % of the streamlined surface area for just one train carriage (L = 25 m) allows one to reduce the aerodynamic drag (including the most actual friction and head-tail pressure components) of the whole train (L = 200 m) by about 5.25 %, so in case of micro-blowing realization on all its 8 carriages, the train’s aerodynamic drag can be reduced approximately by 42 %.
Measurement of parameters of low-intensity shock wave under nonuniform flow conditionsKiseleva, T. A.;Kislovskiy, V. A.
2018 Thermophysics and Aeromechanics
doi: 10.1134/S0869864318050050
Abstract Under the experimental studies carried out to reduce the sonic boom intensity created by the aircraft by means of active action, the problem of measuring the shock wave parameters in nonuniform flow is considered. Comparison of the pressure profiles behind the shock wave obtained by means of a drained measuring plate and a comb of brake pressure probes is given. It is shown that the technique using brake pressure probes provides an acceptable reliability of pressure distributions measurements in the near zone of the model. The use of the drained plate leads to significant errors in measuring under nonuniform flow conditions. Analysis of the causes of signal distortion is carried out. The procedure for experimental data processing is presented.
The study of hydrodynamic processes of a coolant flow in FA-KVADRAT PWR with various mixing spacer gridsDmitriev, S. M.;Dobrov, A. A.;Doronkov, D. V.;Pronin, A. N.;Solntsev, D. N.;Sorokin, V. D.;Khrobostov, A. E.
2018 Thermophysics and Aeromechanics
doi: 10.1134/S0869864318050062
Abstract The article presents the results of experimental studies of the influence of different designs of mixing spacer grids on the coolant flow in FA-KVADRAT PWR. The investigations were carried out by simulating the coolant flow in the core on the experimental air stand being an aerodynamic open loop through which air is pumped. To measure the local hydrodynamic characteristics of the coolant flow, special pneumometric sensors were used for measuring the total velocity vector and the flow rate value. During the investigations of the local hydrodynamics of the coolant, transverse flow velocity, as well as the coolant flow rates in the cells of the experimental model FA-KVADRAT, was measured. The analysis of spatial distribution of projections of absolute flow velocity allowed studying and detailing the coolant flow pattern behind the mixing spacer grids with different designs of deflectors as well as selecting the optimal design of the deflector. The accumulated database on the coolant flow in FA-KVADRAT has formed the basis for engineering assessment of active zones’ structures of PWR. The results of experimental studies are used to verify CFD codes (in both foreign and domestic development) as well as programs for detailed cell-by-cell calculation of active zones in order to reduce conservatism when assessing heat engineering reliability.
Hydrodynamics and heat transfer for large amplitude pulsating laminar flow in channelsValueva, E. P.;Purdin, M. S.
2018 Thermophysics and Aeromechanics
doi: 10.1134/S0869864318050074
Abstract The heat transfer at superposition of high-frequency oscillations on a laminar flow of a liquid in flat and rectan-gular channels at a distance from an inlet of a heated site is investigated under boundary conditions on channel walls of the first and second kind. For the flat channel, the obtained analytical expressions for the amplitude and phase profiles of the longitudinal velocity oscillations are used as a function of the dimensionless oscillation frequency in the form of functions of a real variable. It is shown that the mean value taken for the perimeter of the channel and also the period of oscillations, the Nusselt number for large amplitudes of mean velocity oscillations over the cross section can signifi-cantly exceed its stationary value. The limiting value of the ratio of Nusselt numbers for a pulsating and steady flow in the region of high pulsation frequencies is found.
Heat transfer and flow characteristics of turbulent slot jet impingement on plane and ribbed surfacesShukla, A. K.;Dewan, A.
2018 Thermophysics and Aeromechanics
doi: 10.1134/S0869864318050086
Abstract A computational study is carried out to assess the suitability of various RANS based turbulence models for slot jet impingement on flat and ribbed surfaces with various values of Reynolds number and jet to plate spacing. The com-puted results are compared with the reported experimental data. It was observed that none of the turbulence models considered predicted the heat transfer data accurately. However, some models predicted the experimental data with good trends, e.g., secondary peak and several spikes in Nusselt number for ribbed surface, with a precise computation of the stagnation point Nusselt number. Further, the effects of slot width, rib pitch and jet to ribbed surface spacing were investigated for jet impingement on a ribbed surface. It was observed that the local Nusselt number increased with slot width and rib to plate spacing. It was also observed that increasing Reynolds number had a positive effect on the local heat transfer. With increasing rib pitch the local Nusselt number increased near the stagnation zone but de-creased downstream. The observed flow pattern was different for jet impingement on a ribbed surface than that on a flat surface.