Design and synthesis of thermosensitive target segment resin with precisely controlled distance between immobilization sites for immobilization of penicillin G acylaseLiu, Yangdong; Lu, Siyuan; Tu, Hongyi; Zhang, Boyuan; Zhao, Yaqin; He, Jiasheng; He, Liangliang; Chen, Zhenbin
2024 Pigment & Resin Technology
doi: 10.1108/prt-06-2022-0076
To save the economic cost and improve the performance of enterprises, this study aims to synthesize high performance immobilized penicillin G acylase (PGA) carriers with fast reaction speed, high recovery rate of enzyme activity and good reusability through corresponding theoretical guidance and experimental exploration.Design methodology approachA diblock resin was synthesized by reversible addition-fragmentation chain transfer polymerization method using N, N-diethylacrylamide (DEA) and β-hydroxyethyl methacrylate (HEMA) as functional monomers poly(N, N-diethylacrylamide)-b-poly(β-hydroxyethyl methacrylate) (PDEA-b-PHEMA) was obtained, and the effect of the ratio of DEA and HEMA on the activity of PGA was investigated, and the appropriate block ratio of DEA and HEMA was obtained. After that, the competitive rate of HEMA and glycidyl methacrylate (GMA) under the carrier preparation conditions was investigated. Based on the above work, a thermosensitive resin carrier PDEA-b-PHEMA-b-P(HEMA-co-GMA) with different target distances was synthesized, and the chemical structures and molecular weight of copolymers were investigated by hydrogen NMR (1H NMR).FindingsThe lower critical solution temperature of the resin support decreases with the increase of the monomer HEMA in the random copolymerization; the catalytic performance study indicated that the response rate of the immobilized PGA is fast, and the recovery rate of the enzyme activity of the immobilized PGA varies with the distance between the targets. When the molar ratio of HEMA to GMA in the resin block is 8.15:1 [i.e. resin PDEA100-b-PHEMA10-b-P(HEMA65-co-GMA8)], the activity recovery rate of immobilized PGA can reach 50.51%, which was 15.49% higher than that of pure GMA immobilized PGA.Originality valueThis contribution provides a novel carrier for immobilizing PGA. Under the optimal molar ratio, the enzyme activity recovery could be up to 50.51%, which was 15.49% higher than that of PGA immobilized on the carrier with nonregulated distance between two immobilization sites.
Design, characterization, theoretical studies, and dyeing properties of new novel diazo salicylaldehyde Schiff base catalyzed with ceric (IV) ammonium nitrate (CAN) as an eco-friendly catalystAli, Ali A.; Abd El-Wahab, H.; Abusaif, Moustafa S.; Ragab, Ahmed; Abdel-Jaid, Omar A.; Eldeeb, E.A.; Ammar, Yousry A.
2024 Pigment & Resin Technology
doi: 10.1108/prt-12-2022-0141
The paper aims to the preparation of novel disperse dye based on azo salicylaldehyde derivatives TF-A [2-hydroxy-5-((3-(trifluoromethyl)phenyl)diazenyl)benzaldehyde] and full evaluation of their use as disperse dye TF-ASC [bis 2-hydroxy-5-((3-(trifluoromethyl)phenyl)diazenyl)benzaldehyde Schiff base with 4,4'-methylenedianiline] for dyeing polyester fabric at various conditions.Design/methodology/approachThe dispersed dye was synthesized via Schiff base condensation in the presence of ceric ammonium nitrate cerium ammonium nitrate 10 mmole% as an eco-friendly catalyst at room temperature. The chemical structure of the prepared dye was characterized via elemental analysis, Fourier-transform infrared spectroscopy, 1H- and 13 C-NMR spectroscopic analysis tools. This study thoroughly examined the dyeing of disperse dye TF-ASC on polyester at various conditions. The characteristics of dyed polyester fabric were measured by colour measurements, as well as light, washing, crock fastness and finally, colour strength. The discrete fourier transform (DFT) theoretical studies, including EHOMO, ELUMO and optimized geometrical structure, were assumed and discussed in detail.FindingsThe results showed that the synthesized organic dye TF-ASC was highly functional and appropriate for this kind of dyeing method. The dyeing fabrics obtained from disperse dye TF-ASC, properties possess high colour strength as well as good overall fastness properties. These dyes had a high affinity for polyester fabric, with just a tiny change in dye affinity when the pH was changed, even under alkaline circumstances. The dye levelness and shade depth of the colour results were good, and there were a variety of hues from light brownish yellow to deep brownish yellow. The results obtained from DFT computational studies such as EHOMO, ELUMO, optimized structure, diploe moment µ and electrophilicity index deduced that prepared organic dye TF-ASC is more applicable as a dispersed dye.Originality/valueThis research is significant because it provides a new dye for dyeing polyethylene terephthalate fibres with exceptional brightness and levelness; the method of preparation is a useful pathway due to its being known as a green chemistry method.
Natural dyeing mediated by atmospheric air pressure plasma treatment of polyesterVankar, Padma S.; Gangwar, Archana
2024 Pigment & Resin Technology
doi: 10.1108/prt-07-2022-0093
The purpose of this study is to check the effectivity of plasma in the natural dyeing of polyester fabric using four natural dyes – Turkey red, Lac, Turmeric and Catechu using plasma and alum mordant. The surface modification on the polyester fabric by plasma along with the use of benign mordant alum is studied. The enhancement of dyeability in polyester fabric with natural dyes is the main focus. Due to surface modification, the wettability increases, which leads to better dye uptake. Better dye uptake and better dye adherence are the main objectives.Design/methodology/approachPlasma-mediated natural dyeing is the main design of this research work. The effect of plasma treatment on surface modification of synthetic fabric polyester and its subsequent effects on their dyeing with different natural dyes, namely, Turkey red, Lac, Turmeric and Catechu are studied. The dyeability was further enhanced by the use of alum as mordant. The main focus is on the betterment of natural dyeing of polyester fabric using sustainable natural dyes resources for dyeing and to reduce wastewater contamination from the usage of toxic additive chemicals for cleaner production.FindingsPlasma-mediated and alum-mordanted dyeing method facilitated very good dyeability of all the four natural dyes, namely, Turkey red, Lac, Turmeric and Catechu. Color strength (K/S) values and fastness properties of plasma-treated samples were far better than untreated samples. The synergistic effect of plasma and alum mordanting has made natural dyeing of polyester very easy with very good fastness results. Natural dyeing of polyester after 2 min of plasma treatment showed excellent and desirable results. The process is also easy to be adapted by industries.Research limitations/implicationsAs polyester is hydrophobic, natural dyeing of polyester fabric is not very easy, but with plasma-mediated natural dyeing, it becomes a very facile dyeing method; thus, there are no limitations. Use of plasma has reduced the need for any chemical additives which are usually added during the dyeing process.Practical implicationsThis process of natural dyeing of polyester fabric can be scaled up to industrial dyeing with natural dyes. Plasma pretreatment of the fabric followed by premordanting with alum has facilitated the natural dyeing well.Social implicationsUse of plasma in place of chemical modifiers can be a green and environmentally friendly approach for sustainable coloration of polyester fabric, providing a clean wet processing for textiles dyeing.Originality/valueThe synergistic effect of plasma-mediated and alum-mordanted natural dyeing of polyester has not been attempted by any researcher. To the best of the authors’ knowledge, this is for the first time that pretreatment with atmospheric plasma followed by alum mordanting of polyester fabric has shown very good dye uptake and fastness properties as the dye molecules could penetrate well after 2 min of the plasma treatment.
Highly efficient elimination of uranium (VI) and thorium (IV) from aqueous solution using activated carbon immobilized on polystyreneElhefnawy, O.A.; Elabd, A.A.
2024 Pigment & Resin Technology
doi: 10.1108/prt-09-2022-0107
The purpose of this study is to prepare a new adsorbent activated carbon immobilized on polystyrene (ACPS) for uranium (VI) and thorium (IV) removal from an aqueous solution. Activated carbon (AC) was derived from biochar material by chemical activation to increase the active sites on its surface and enhance the adsorption capacity. Activated carbon (AC) was immobilized on polystyrene (PS) to improve the physical properties and facilitate separation from the working solution. A feasibility study for the adsorption of uranium (VI) and thorium (IV) on the new adsorbent (ACPS) has been achieved. Adsorption kinetics, isotherms, and thermodynamics models of the adsorption process were used to describe the reaction mechanism.Design/methodology/approachActivated carbon was synthesized from biochar charcoal by 2 M H2SO4. Activated carbon was immobilized on the pretreatment polystyrene by hydrothermal process forming new adsorbent (ACPS). Characterization studies were carried out by scanning electron microscope, energy-dispersive X-ray spectrometer, infrared spectroscopy and X-ray diffraction techniques. Different factors affect the adsorption process as pH, contact time, solid/liquid ratio, initial concentration and temperature. The adsorption mechanism was explained according to kinetic, isothermal and thermodynamic studies. Also, the regeneration of spent ACPS was studied.FindingsThe experimental results showed that pH and equilibrium time of the best adsorption were 6.0 and 60 min for U(VI), 4.0 and 90 min for Th(IV), (pHPZC = 3.4). The experimental results fit well with pseudo-second order, Freundlich and Dubinin–Radushkevich models proving the chemisorption and heterogenous adsorption reaction. Adsorption thermodynamics demonstrated that the adsorption process is exothermic and has random nature of the solid/liquid interface. In addition, the regeneration of spent ACPS research showed that the adsorbent has good chemical stability. According to the comparative study, ACPS shows higher adsorption capacities of U(VI) and Th(IV) than other previous bio-adsorbents.Originality/valueThis study was conducted to improve the chemical and physical properties of bio-charcoal purchased from the local market to activated carbon by hydrothermal method. Activated carbon was immobilized on polystyrene forming new adsorbent ACPS for eliminating U(VI) and Th(IV) from aqueous solutions.
Evaluation of the anti-erosion performance of PLA and ABS materials with two different micro texturesSingh Sidhu, Ripendeep; Singh, Gurmeet; Gill, Harjot Singh
2024 Pigment & Resin Technology
doi: 10.1108/prt-10-2022-0127
This empirical study aims to investigate the erosion wear performance of two different 3D-printed materials (acrylonitrile butadiene styrene [ABS] and polylactic acid [PLA]) with various micro textures. The two different textures (prism and square) were created over the surfaces of both materials by using the 3D-printed technique.Design/methodology/approachThe erosion experiments on both materials were performed by using Ducom Erosion Jet Tester. Erosion tests were performed at four different impacting velocities (15, 30, 45 and 60 m/s) with the four different particle sizes (17, 39, 63 97 µm) at the impact angles (30°–90°) for the time duration of 5, 10, 15 and 20 min. The two different textures prism and cone were used for performing the erosion experiments. Taguchi’s orthogonal L16 (mixed level) was used to reduce the number of experiments and to determine the impact of these parameters on erosion wear performance of both 3D-printed materials.FindingsThe PLA with cone texture was found to be best (against erosion) than the ABS cone and prism textures due to their high hardness (68 HV). Also, the average signal to noise (S/N) ratio for PLA and ABS was measured as 56.4 and 44.4 dB, respectively. As the value of the S/N ratio is inversely proportional to the erosion rate, the PLA has the least erosion rate as compared to the ABS. The sequence of erosion wear influencing parameters for both materials was in the following order: velocity > erodent size > texture > impact angle > time interval.Originality/valueBoth PLA and ABS with different micro textures for erosion testing were studied with Taguchi’s optimization method, and the erosion mechanisms are well analyzed by using scanning electron microscopy and Image J techniques.
Evaluation of natural oil polyol hydrophobic acrylic-based coating incorporated with SiO2 nanoparticles for enhanced corrosion protectionWonnie Ma, Iling Aema; Ong, Gerard; Shafaamri, Ammar; Jamalludin, Julie Nabilah; Ishun, Nina Nazirah; Kasi, Ramesh; Subramaniam, Ramesh
2024 Pigment & Resin Technology
doi: 10.1108/prt-07-2022-0092
This study aims to fabricate the acrylic-based polymeric composite coating with a hydrophobic surface associated with natural oil polyol (NOP) and polydimethylsiloxane with the incorporation of 3 Wt.% SiO2 nanoparticle (SiO2np) against the corrosive NaCl media.Design/methodology/approachThe structural properties of the formulated polymeric composite coatings were investigated by using Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, water contact angle (WCA) and cross-hatch (X-Hatch) tests. The WCA measurement was used to study the surface wettability of the formulated polymeric composite coatings. The corrosion protection performance of the nanocomposite coated on the mild steel substrate was studied by immersing the samples in 3.5 Wt.% NaCl solution for 30 days using electrochemical impedance spectroscopy.FindingsThe enhanced polymeric composite coating system performed with an excellent increase in the WCA up to 111.1° which is good hydrophobic nature and very high coating resistance in the range of 1010 Ω attributed to the superiority of SiO2np.Originality/valueThe incorporation of SiO2np into the polymeric coating could enhance the surface roughness and hydrophobic properties that could increase corrosion protection. This approach is a novel attempt of using NOP along with the addition of SiO2np.
Eco-friendly tiles: fabrication and testing of composite tile made from industrial gypsum wastesShafik, Emad S.; Rozik, Nehad N.; Youssef, Nadia F.; Abd-El-Messieh, Salwa L.
2024 Pigment & Resin Technology
doi: 10.1108/prt-10-2022-0118
The purpose of this study is to utilize two types of gypsum mold wastes from two different factories as novel and economical reinforcing fillers for composites that may be useful for building materials and floors. Two types of gypsum mold wastes from two different factories as raw materials were incorporated into linear low density polyethylene (LLDPE) aiming to get rid of that waste in one hand and obtaining useful economical composites suitable for building materials and floors.Design/methodology/approachComposites were prepared from two types of gypsum mold wastes substituted with different ratios from raw gypsum and LLDPE throughout the melt blending technique. The physico-mechanical and electrical investigations in addition to the morphology of the composites were included.FindingsThe mechanical results illustrate that substituting commercial gypsum with gypsum mold waste positively affects tensile strength, flexural strength and hardness shore D for the LLDPE composites. The tensile strength increased from 5 MPa for LLDPE filled with commercial gypsum as blank samples to 11.2 and 13.2 MPa for LLDPE filled with D and S waste. Also, electrical properties which include both permittivity ɛ′ and dielectric loss ɛ″ increased with increasing the waste content in the LLDPE matrix. In addition to the electrical conductivity values, σ lies in the order of insulation materials. Consequently, it is possible to produce materials with a gypsum matrix by adding industrial waste, improving the behavior of the traditional gypsum and enabling those composites to be applied in various construction applications as eco-friendly tiles.Originality/valueThis study aims to prepare eco-friendly composites based on LLDPE and waste gypsum mold to preserve resources for the coming generations, other than lowering the environmental footprint and saving the costs of getting rid of it.
Cobalt-containing diopside pigments based on granulated blast furnace slagZaichuk, Аleksandr Viktorovich; Amelina, Аleksandra Andreevna; Hordieiev, Yurii Sergeevich
2024 Pigment & Resin Technology
doi: 10.1108/prt-10-2022-0112
The purpose of this study was to the low-temperature synthesis of cobalt-containing diopside pigments based on granulated blast furnace slag and to study the characteristics of the mineral formation processes, changes in the structure and colour indices.Design/methodology/approachSynthesis of cobalt-containing diopside pigments based was carried out by the directional formation of the mineralogical composition with the introduction of part of the components using granulated blast-furnace slag.FindingsIt has been established that the formation of the diopside phase in pigments containing blast-furnace slag as the main component proceeds at low temperatures (1,100°C–1,150 °C). The colour of diopside pigments is formed because of the isomorphic substitution of Si4+ ions for Al3+ ions and Mg2+ ions for Co2+ ions. It is expedient to add CoO in an amount of 0.9 mol (18 Wt.%) into the composition of diopside pigments based on blast-furnace slag to obtain defect-free violet glazes.Practical implicationsThe developed diopside pigments enable obtaining of high-quality violet glazes for ceramics. The application of the obtained results can significantly reduce the consumption of traditional raw materials in the composition of silicate ceramic pigments, as well as reduce their firing temperature.Originality/valueCalcium, magnesium and silicon oxides are the main components of blast-furnace slag. In addition, granulated blast furnace slag is mainly represented by the glassy phase, which determines its high activity during the firing process. These factors are prerequisites for using the blast-furnace slag as a valuable substitute for chemically pure or natural raw materials in silicate pigments and reducing their firing temperature.
Natural dyeing of silk and jute fabric with the aqueous extract of coconut leaves – an eco-friendly approachHossain, Shahin; Jalil, M. Abdul; Mahmud, Rois Uddin; Kader, Abdul
2024 Pigment & Resin Technology
doi: 10.1108/prt-10-2022-0125
In recent years, natural dyes have attracted significant attention globally because of growing public awareness of the environment and health hazards associated with synthetic dyes. Natural dyes can provide special aesthetic qualities as well as the ethical significance of a product which is environmentally friendly. By keeping this burning issue in mind, this study aims to explore the dyeing properties of various unexplored environmentally friendly natural dyes.Design/methodology/approachIn this study, the aqueous extract of coconut leaves is used for dyeing purpose. The silk and jute fabrics were dyed with the extract alone as well as in combination with metal salts as mordants by employing pre-, meta- and postmordanting techniques. The dyeing properties of the colored samples were evaluated by measuring their color strength; CIEL*a*b* values; and color fastness to washing, light and rubbing.FindingsA yellow shade was achieved when the fabric samples were dyed solely with the extract. However, shade variations were observed when different mordants and mordanting techniques were applied. In all the cases, metallic salts improved the color fastness properties of dyed samples to washing, light and rubbing especially for the silk fabric.Originality/valueTo the best of the authors’ knowledge, this is the first report on a natural dye extracted from the leaves of coconut. Leaf as the source of dye has added an extra advantage, as it is reproducible and can be collected easily without harming the plants. The reported dye could be an attractive choice for sustainable and eco-friendly dyeing.