Home

Open House International

Subject:
Architecture
Publisher:
Emerald Group Publishing Limited
Emerald Publishing
ISSN:
0168-2601
Scimago Journal Rank:
14
journal article
LitStream Collection
Transforming learning for architecture: online design studio as the new norm for crises adaptation under COVID-19

Al Maani, Duaa; Alnusairat, Saba; Al-Jokhadar, Amer

2021 Open House International

doi: 10.1108/ohi-01-2021-0016

This study explored the virtual design studio as a transformative learning model for the disaster and resilience context, including the factors that affect students' perceptions and experiences of the quality of this adaptation.Design/methodology/approachData obtained from 248 students who took online design studios during the lockdown in 15 universities in Jordan highlight many factors that make the experience of the online design studio more challenging. Despite these challenges, strongly positive aspects of the online studio were evident and widely discussed.FindingsA model of a hyper-flexible design studio in which students can have a direct contact with their instructor when needed – in addition to online activities, reviews and written feedback – is highly recommended for the beginner years. This HyFlex model will enrich students' learning and understanding of the fundamentals of design and ensure that technology solutions deliver significant and sustainable benefits.Originality/valueFor students, studying architecture necessitates a fundamental shift in the learning mode and attitude in the transition from school. Beginner students are often surprised by the new mode of learning-by-doing and the new learner identity that they must adopt and adapt to in the design studio. Moreover, due to the coronavirus disease 2019 (COVID-19) pandemic, architecture teaching has moved online. Both instructors and students are experiencing dramatic changes in their modes of teaching and learning due to the sudden move from on-campus design studios to a virtual alternative, with only the bare minimum of resources and relevant experience.
journal article
LitStream Collection
Immersive construction detailing education: building information modeling (BIM)–based virtual reality (VR)

Elgewely, Maha Hosny; Nadim, Wafaa; ElKassed, Ahmad; Yehiah, Mohamed; Talaat, Mostafa Alaa; Abdennadher, Slim

2021 Open House International

doi: 10.1108/ohi-02-2021-0032

This research proposes a virtual reality (VR) platform for construction detailing that provides experiential learning in a zero-risk environment. It builds on integrating VR technology as a medium and building information modeling (BIM) as a repository of information and a learning tool.Design/methodology/approachThis work discusses the proposed environment curricular unit prototype design, implementation and validation. The validation of the VR environment was conducted in three phases, namely, piloting, testing (system usability and immersion) and learning gain validation, each of which has its aim and outcomes and has been assessed both qualitatively and quantitatively.FindingsAfter considering the feedback, the VR environment prototype is then validated on the level of learning outcomes, providing the evidence that it would enhance students' engagement, motivation and achievement accordingly. The results indicated 30% learning progress after experiencing the VR environment vs. 13.8% for paper-based studying.Originality/valueIn reference to building construction education, construction site visits provide students with real-life practical experience which are considered an extension for classroom. Nevertheless, it is challenging to integrate construction site visits regularly during the academic semester with respect to the class specific needs. The research at hand adopts integrating VR and BIM in AEC (Architecture, Engineering and Construction) education by proposing a system that can work as a mainstream complementary construction detailing learning method for architecture students. The proposed VR system facilitates a virtual construction site that meets the learning needs where students can explore and build in a real scale environment.
journal article
LitStream Collection
4D printing of wooden actuators: encoding FDM wooden filaments for architectural responsive skins

El-Dabaa, Rana; Salem, Islam

2021 Open House International

doi: 10.1108/ohi-02-2021-0028

Conventional motion mechanisms in adaptive skins require rigid kinematic mechanical systems that require sensors and actuation devices, hence impeding the adoption of zero-energy buildings. This paper aims to exploit wooden responsive actuators as a passive approach for adaptive facades with dynamic shading configurations. Wooden passive actuators are introduced as a passive responsive mechanism with zero-energy consumption.Design/methodology/approachThe study encodes the embedded hygroscopic parameters of wood through 4D printing of wooden composites as a responsive wooden actuator. Several physical experiments focus on controlling the printed hygroscopic parameters based on the effect of 3D printing grain patterns and infill height on the wooden angle of curvature when exposed to variation in humidity. The printed hygroscopic parameters are applied on two types of wooden actuators with difference in the saturation percentage of wood in the wooden filaments specifically 20% and 40% for more control on the angle of curvature and response behavior.FindingsThe study presents the ability to print wooden grain patterns that result in single and double curved surfaces. Also, printing actuators with variation in infill height control each part of wooden actuator to response separately in a controlled passive behavior. The results show a passive programmed self-actuated mechanism that can enhance responsive façade design with zero-energy consumption through utilizing both material science and additive manufacturing mechanisms.Originality/valueThe study presents a set of controlled printed hygroscopic parameters that stretch the limits in controlling the response of printed wood to humidity instead of the typical natural properties of wood.
journal article
LitStream Collection
Against a workplace contagion: a digital approach to support hygiene-conscious office space planning

Mekawy, Mohammed; Gabr, Mostafa A.

2021 Open House International

doi: 10.1108/ohi-02-2021-0029

This research presents a multi-objective optimization approach to integrate spatial planning measures in open-plan office environments in order to lower the risk of a workplace contagion. These measures were gathered, formalized, parameterized, and coded and integrated into a digital tool.Design/methodology/approachTo demonstrate the research's approach, a simple design problem was designed, explored, and the results were evaluated. The researchers assumed an empty open office space, with the windows and doors (as exits and/or as access to amenities) already in place (Figure 1). The aim is to optimize the space planning, with the following objectives in mind: maximize the number of employees in a floor while maintaining physical distancing recommendations for avoiding infections; no face-to-face or back-to-back seating positions are allowed; maximize physical access to windows for natural ventilation; minimizing areas with potential “congestions” in the space, i.e. areas susceptible to overlapping foot traffic from numerous employees, which increases the potential for close encounters and minimizing the travel distance from the employee's desk to all neighbouring desks, hence reducing the foot traffic in the space. In the experiment, the following was assumed: the workspace layout is rectangular, the workstation desks are rectangular, the seating area, windows, and access to exits and amenities are well-defined.FindingsIt was found that configurations with desks parallel to the longer side of the space provided more employee capacity; however, they usually performed poorer in terms of the buzz score. On the other hand, configurations with desks perpendicular to the longer side of the space had, on average, better buzz scores, usually at the cost of the reduction of the number of potential employees. There was however one alternative in the latter set of configurations, which achieved above-average buzz and adjacency scores, and the potential to accommodate 56 employees, one of the highest capacities for employees in the solution space (the highest being 60). Designers could explore the design space further to make sure it complies with these basic spatial rules for mitigating the spread of infections, while experimenting with the workspace layout.Research limitations/implicationsIt is important to note that in order for a designer to handle any given design problem even with the aid of a computer system, it is important to provide a set of initial conditions and assumptions and a set of variables. In the universe of all possible variables, the designer can pick a number of variations of the initial conditions and run parallel experiments to compare their outcomes. In the experiment demonstrated here the following was assumed. The workspace layout is rectangular with predefined entrances/exits. Free flow of employees is allowed. No pre-set one-way paths. The workstation desks are rectangular. The seating area windows and access to amenities are well-defined.Originality/valueThis research presented a digital optimization approach to enhance the spatial planning process in open-plan office spaces, with the aim of mitigating the risks of infectious diseases' transmission. Spatial design considerations were gathered from literature and formalized as design objectives and constraints, then further parameterized and represented as numerical values and scores for objective evaluation. The design parameters, constraints and calculations to derive the scores for the designated design objectives were coded into a digital tool that can receive a building information model (BIM) model of an office space and provide preliminary furniture plans using a multi-objective optimization (MOO) approach. It is obvious that the furniture layouts that can be considered “acceptable”, based on this approach, are not considered “ready-to-implement” solutions, because designers need to integrate a multitude of other design factors in their design. This approach can still, however, be useful to help the designer integrate spatial considerations for slowing down a contagion.
journal article
LitStream Collection
A dynamic vertical shading optimisation to improve view, visual comfort and operational energy

Valitabar, Mahdi; Mahdavinejad, Mohammadjavad; Skates, Henry; Pilechiha, Peiman

2021 Open House International

doi: 10.1108/ohi-02-2021-0031

The aim of this paper is to present a parametric design method to generate optimum adaptive facades regarding occupants' comfort and building energy criteria. According to the literature review, the following questions have arisen to address the research gaps: Is it possible to have the outside view throughout the whole year without discomfort glare by utilising adaptive solar facades (ASFs)? How can architects integrate both view quality and quantity into ASF design? What is the impact of dynamic vertical shading systems mounted on south facades on the outside view, occupants' visual comfort and operational energy? How can we evaluate the view quantity through multi-layer shading systems?Design/methodology/approachIn recent years, there is a surge in demand for fully glazed buildings, motivating both architects and scholars to explore novel ideas for designing adaptive solar facades. Nevertheless, the view performance of such systems has not been fully explored especially when it comes to the effect of dynamic vertical shading systems mounted on south facades. This fact clarifies the need to conduct more research in this field by taking into account the window view and natural light. Consequently, a simulation research is carried out to investigate the impact of a dynamic shading system with three vertical slats used on the south facade of a single office room located in Tehran, on both view quality and quantity, visual comfort and operational energy. The research attempts to reach a balance between the occupant's requirements and building energy criteria through a multi-objective optimisation. The distinctive feature of the proposed method is generating some optimum shading which could only cover the essential parts of the window area. It was detected from the simulation results that the usage of a dynamic vertical shading system with multi slats for south facades compared to common Venetian blinds can firstly, provide four times more view quantity. Secondly, the view quality is significantly improved through enabling occupants to enjoy the sky layer the entire year. Finally, twice more operational energy can be saved while more natural light can enter the indoor environment without glare. The final outcome of this research contributes toward designing high-performance adaptive solar facades.FindingsThis paper proposes a new metric to evaluate the view quantity through a multi-layer shading system. The proposed method makes it clear that the usage of dynamic vertical shading systems with multi-layers mounted on south facades can bring many benefits to both occupants and building energy criteria. The proposed method could (1) provide four times more view quantity; (2) improve view quality by enabling occupants to watch the sky layer throughout the whole year; (3) slash the operational energy by twice; (4) keep the daylight glare probability (DGP) value in the imperceptible range.Research limitations/implicationsThe research limitations that should be acknowledged are ignoring the impact of the adjacent building on sunlight reflection, which could cause discomfort glare issues. Another point regarding the limitations of the proposed optimisation method is the impact of vertical shading systems on users' visual interests. A field study ought to be conducted to determine which one could provide the more desirable outside view: a vertical or horizontal the view. Research on the view performance of ASFs, especially their impact on the quality of view, is sorely lacking.Originality/valueThis paper (1) analyses the performance of dynamic vertical shadings on south facades; (2) evaluates outside view through multi-layer shading systems; and (3) integrates both view quality and quantity into designing adaptive solar facades.
journal article
LitStream Collection
An interdisciplinary approach for tacit knowledge communication between the designer and the computer

Hossam Eldin, Hala; Bakir, Ramy; El-Fiki, Sherif

2021 Open House International

doi: 10.1108/ohi-02-2021-0037

This research investigates the means of tacit knowledge (TK) communication between the designer and the computer in architectural design. Despite the integration of state-of-the-art computational technologies in different design phases, this integration happens within a limited scope, focusing mainly on tangible aspects of the design process, such as technical systems and visual representations. This lets architectural design miss the wider scope technology provides, where it can help in developing the computational design process through incorporating new intangible knowledge domains that were usually neglected, such as tacit knowledge, and through incorporating more design entities that were not included in the design process before.Design/methodology/approachThe study conducts an interdisciplinary analytical review of the literature to achieve two main research goals. The first goal investigates TK communication between human beings and the second understands approaches of TK communication between humans and computers. For each goal, three phases were implemented; an initial research phase, where main keywords are identified, a sampling and selection of literature phase and an analysis of literature phase.FindingsThrough interlinking findings from different disciplines, the study presents a theoretical framework for TK communication. The framework provides architects with an approach to construct and transfer TK while using the computer in a computational design environment, presenting an individual and a social set of conditions and factors revealed from the review of the analyzed literature. The framework particularly emphasizes the significance of a human–computer symbiotic relationship for the process of TK communication to take place.Originality/valueThis paper presents a novel interdisciplinary reading into the literature of fields beyond architectural design, incorporating intangible knowledge domains into the computational design process and expanding the capabilities of computational design tools to allow for the transfer of intangible design attributes between different design entities, particularly tacit design knowledge.
journal article
LitStream Collection
Smart system to generate the optimal authorized bounding volume

Belkaïd, Alia; Ben Saci, Abdelkader; Hassoumi, Ines

2021 Open House International

doi: 10.1108/ohi-02-2021-0039

The overall functioning of this system is based on two approaches: construction and supervision. The first is conducted entirely by the machine, and the second requires the intervention of the designer to collaborate with the machine. The morphological translation of urban rules is sometimes contradictory and may require additional external relevance to urban rules. Designer arbitration assists the artificial intelligence (AI) in accomplishing this task and solving the problem.Design/methodology/approachThis paper provides a method of computational design in generating the optimal authorized bounding volume which uses the best target values of morphological urban rules. It examines an intelligent system, adopting the multi-agent approach, which aims to control and increase urban densification by optimizing morphological urban rules. The process of the system is interactive and iterative. It allows collaboration and exchange between the machine and the designer. This paper is adopting and developing a new approach to resolve the distributed constraint optimization problem in generating the authorized bounding volume. The resolution is not limited to an automatic volume generation from urban rules, but also involves the production of multiple optimal-solutions conditioned both by urban constraints and relevance chosen by the designer. The overall functioning of this system is based on two approaches: construction and supervision. The first is conducted entirely by the machine and the second requires the intervention of the designer to collaborate with the machine. The morphological translation of urban rules is sometimes contradictory and may require additional external relevance to urban rules. Designer arbitration assists the AI in accomplishing this task and solving the problem. The human-computer collaboration is achieved at the appropriate time and relies on the degree of constraint satisfaction. This paper shows and analyses interactions with the machine during the building generation process. It presents different cases of application and discusses the relationship between relevance and constraints satisfaction. This topic can inform a chosen urban densification strategy by assisting a typology of the optimal authorized bounding volume.FindingsThe human-computer collaboration is achieved at the appropriate time and relies on the degree of constraint satisfaction with fitness function.Originality/valueThe resolution of the distributed constraint optimization problem is not limited to an automatic generation of urban rules, but involves also the production of multiple optimal ABV conditioned both by urban constraints as well as relevance, chosen by the designer.
journal article
LitStream Collection
We gain a lot…but what are we losing? A critical reflection on the implications of digital design technologies

Soulikias, Aristofanis; Cucuzzella, Carmela; Nizar, Firdous; Hazbei, Morteza; Goubran, Sherif

2021 Open House International

doi: 10.1108/ohi-02-2021-0041

Highly sophisticated digital technologies have distanced architects and designers from intimate and immediate hand-drawing practices. Meanwhile the changes they rapidly bring come with undetected changes in cultural and social norms regarding the built environment. The growing dependence on computers calls for a more holistic, socially inclusive and place-responsive design practice. This paper aims to shed light on what we are losing in the design process as we rapidly transition to communicate architecture using digital media. The authors contemplate the paradigms in which the human body and physical objects still play an important role in today's design environment.Design/methodology/approachThe paper looks at current trends in developing and establishing “computer imaging” within architectural education, and the architectural profession through parametric design and the area of sustainability. In order to reveal novel and hybrid ways of architectural image-making, it also looks into art forms that already experiment with bodily practices in design by taking an artisanal animation project as a case study.FindingsThe renewed longing for craft, haptic environments, tactile experiences and hand-crafted artifacts and artworks that engage the senses can be exemplified with the success of the documentary Last Dance on the Main, an animated film on the endangered layers of human presence in one of Montreal's downtown neighborhoods. The open possibilities for creative hybridizations between the handmade and the digital in architecture practice and education are exposed.Originality/valueThe influence of film on the perception and consequent design of cities is well documented. There is little literature, however, on how the materiality and process of artisanal film animation can provide alternative, if not additional, insights on how to communicate various aspects of the built environment, particularly those rooted in the human body. Furthermore, handmade film explores a broader understanding of sustainability, which includes considerations for social and cultural contexts.
journal article
LitStream Collection
A material-based computation framework for parametric design education

Abdelmohsen, Sherif; Massoud, Passaint

2021 Open House International

doi: 10.1108/ohi-02-2021-0043

Material-based computation has been recently introduced in architectural education, where parameters and rules related to materials are integrated into algorithmic thinking. The authors aim to identify affordances of material-based computation in terms of supporting the understanding of parametric design, informing the process of parametric form finding in an educational setup and augmenting student learning outcomes.Design/methodology/approachThe authors propose a material-informed holistic systems design framework for parametric form finding. The authors develop a pedagogical approach that employs material-based computation focusing on the interplay between the physical and the digital in a parametrically driven façade design exercise. The approach comprises two phases: (1) enabling physical exploration with different materials to arrive at the design logic of a panel prototype and (2) deducing embedded and controlled parameters, based on the interplay of materials and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity.FindingsThe results confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relations, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic and utilized parametric design to inform form finding as a bottom-up approach.Originality/valueMost precedent approaches developed to teach parametric design concepts in architectural education have focused on universal strategies that often result in fixating students on following standard blindly followed scripts and procedures, thus defying the purpose of a bottom-up form finding framework. The approach expands the pedagogical strategies employed to address parametric design as a form finding process.
Articles per page
Browse All Journals

Related Journals: