The Dynamics of Pheromone Gland Synthesis and Release: a Paradigm Shift for Understanding Sex Pheromone Quantity in Female MothsFoster, Stephen; Anderson, Karin; Casas, Jérôme
2018 Journal of Chemical Ecology
doi: 10.1007/s10886-018-0963-zpmid: 29744747
Moths are exemplars of chemical communication, especially with regard to specificity and the minute amounts they use. Yet, little is known about how females manage synthesis and storage of pheromone to maintain release rates attractive to conspecific males and why such small amounts are used. We developed, for the first time, a quantitative model, based on an extensive empirical data set, describing the dynamical relationship among synthesis, storage (titer) and release of pheromone over time in a moth (Heliothis virescens). The model is compartmental, with one major state variable (titer), one time-varying (synthesis), and two constant (catabolism and release) rates. The model was a good fit, suggesting it accounted for the major processes. Overall, we found the relatively small amounts of pheromone stored and released were largely a function of high catabolism rather than a low rate of synthesis. A paradigm shift may be necessary to understand the low amounts released by female moths, away from the small quantities synthesized to the (relatively) large amounts catabolized. Future research on pheromone quantity should focus on structural and physicochemical processes that limit storage and release rate quantities. To our knowledge, this is the first time that pheromone gland function has been modeled for any animal.
Sex-Pairing Pheromones in Three Sympatric Neotropical Termite Species (Termitidae: Syntermitinae)Dolejšová, Klára; Křivánek, Jan; Kalinová, Blanka; Hadravová, Romana; Kyjaková, Pavlína; Hanus, Robert
2018 Journal of Chemical Ecology
doi: 10.1007/s10886-018-0965-xpmid: 29752680
Termite colonies are almost always founded by a pair of winged dispersers, in spite of the high costs and low success rates inherent in independent colony foundation. The dispersal flights of imagoes from natal colonies are followed by mate search, mediated by sex-pairing pheromones. Here, we studied the chemistry of sex-pairing pheromones and the related aspects of mate search in winged imagoes of two facultatively parthenogenetic species, Embiratermes neotenicus and Silvestritermes minutus, and an additional species from the same subfamily, Silvestritermes heyeri. All three species are widespread in the Neotropics, including the rainforests of French Guiana. After the dispersal flight and spontaneous loss of wings, females expose their hypertrophied tergal glands situated under abdominal tergites VIII – X. The females are attractive to males and, upon direct contact, the two sexes form characteristic tandems. Chemical analyses indicated that the females secrete species-specific combinations of unbranched, unsaturated C12 primary alcohols from the tergal glands, (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (approx. 200 pg per female) and (3Z)-dodec-3-enol (185 pg) in E. neotenicus, (3Z,6Z)-dodeca-3,6-dien-1-ol (3500 pg) in S. heyeri, and (3Z,6Z)-dodeca-3,6-dien-1-ol (300 pg) and (3Z)-dodec-3-enol (50 pg) in S. minutus. (3Z,6Z,8E)-Dodeca-3,6,8-trien-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol act as major pheromone components in the respective species and mimic the function of female tergal gland extracts in electrophysiological and behavioral experiments. Biologically relevant amounts of the third compound, (3Z)-dodec-3-enol, elicited non-significant reactions in males of E. neotenicus and S. minutus, and slight synergistic effects in males of S. minutus when tested in combination with the major component.
Sex Attractant Pheromones of Virgin Queens of Sympatric Slave-Making Ant Species in the Genus Polyergus, and their Possible Roles in Reproductive IsolationGreenberg, Les; Johnson, Christine; Trager, James; McElfresh, J.; Rodstein, Joshua; Millar, Jocelyn
2018 Journal of Chemical Ecology
doi: 10.1007/s10886-018-0966-9pmid: 29785626
Species of the ant genus Polyergus are social parasites that steal brood from colonies of their hosts in the closely related genus Formica. Upon emergence as adults in a mixed population, host Formica workers carry out all the normal worker functions within the Polyergus colony, including foraging, feeding, grooming, and rearing brood of the parasitic Polyergus ants. Some unmated Polyergus gynes (queens) run in the raiding columns of their colonies and attract males by releasing a pheromone from their mandibular glands. There are two Polyergus species groups in North America: an eastern P. lucidus group and a western P. breviceps group. One species of each of these groups, P. lucidus Mayr and P. mexicanus Emery, are sympatric in Missouri. In this study, we characterized the sex pheromones of virgin queens of two species of the P. lucidus group (P. lucidus sensu stricto and P. sanwaldi) and one species of the P. breviceps group (P. mexicanus), and compared these with the previously identified sex pheromone of P. topoffi of the P. breviceps group. We then used sex pheromone blends reconstructed from synthesized components of the two groups to test their efficacy at reproductively isolating these species. We found that methyl 6-methylsalicylate is conserved as the major component of the pheromone blends for both Polyergus species groups; however, methyl (R)-3-ethyl-4-methylpentanoate is the species-specific minor component produced by P. lucidus group queens, and (R)-3-ethyl-4-methylpentan-1-ol is the crucial minor component for P. breviceps group queens. The optimal ratio of the major and minor components for P. lucidus group queens was about 100:1 salicylate to ester. In concurrent field trials in Missouri, males of P. lucidus sensu stricto and P. mexicanus (a member of the P. breviceps group) were attracted almost exclusively to their particular blends of sex pheromone components. To our knowledge, this is the first example of a possible sex-pheromone-based reproductive isolating mechanism in ants.
Volatile and Contact Chemical Cues Associated with Host and Mate Recognition Behavior of Sphenophorus venatus and Sphenophorus parvulus (Coleoptera: Dryophthoridae)Duffy, Alexandra; Hughes, Gabriel; Ginzel, Matthew; Richmond, Douglas
2018 Journal of Chemical Ecology
doi: 10.1007/s10886-018-0967-8pmid: 29770906
Beetles in the genus Sphenophorus Schönherr, or billbugs, potentially utilize both volatile and non-volatile behavior-modifying chemical signals. These insects are widely distributed across North America, often occurring in multi-species assemblages in grasses. However, details about their host- and mate-finding behavior are poorly understood. This study tested the hypothesis that volatile organic compounds from host-plants and conspecifics direct the dispersal behavior of hunting billbug S. venatus Say. Further, we characterized the cuticular hydrocarbon profiles of two widespread pest species, S. venatus and bluegrass billbug S. parvulus Gyllenhaal, to assess the potential role of contact pheromones in mate-recognition. In Y-tube olfactometer bioassays, S. venatus males were attracted to a combination of conspecifics and Cynodon dactylon host-plant material, as well as C. dactylon plant material alone. S. venatus females were attracted to a combination of male conspecifics and host-plants but were also attracted to male conspecifics alone. Field evaluation of a putative male-produced aggregation pheromone, 2-methyl-4-octanol, identified from two congeners, S. levis Vaurie and S. incurrens Gyllenhaal, did not support the hypothesis that S. venatus and S. parvulus were also attracted to this compound. Gas chromatography-mass spectrometry analysis of S. venatus and S. parvulus whole-body cuticular extracts indicated a series of hydrocarbons with qualitative and quantitative interspecific variation in addition to intraspecific quantitative variation between males and females. This study provides the first evidence that S. venatus orients toward host- and insect-derived volatile organic compounds and substantiates the presence of species-specific cuticular hydrocarbons that could serve as contact pheromones for sympatric Sphenophorus species.
Inhibitory Effects of Semiochemicals on the Attraction of an Ambrosia Beetle Euwallacea nr. fornicatus to QuercivorolByers, John; Maoz, Yonatan; Wakarchuk, David; Fefer, Daniela; Levi−Zada, Anat
2018 Journal of Chemical Ecology
doi: 10.1007/s10886-018-0959-8pmid: 29663165
The Euwallacea fornicatus (Eichhoff) species complex includes the polyphagous shot hole borer (PSHB), an ambrosia beetle infesting avocado limbs, Persea americana Mill. Synthetic quercivorol, a monoterpene alcohol, is known to attract females (males are flightless) over a range of release rates spanning three orders of magnitude. The upper release dose was extended 10-fold using sticky traps baited with quercivorol released at 1× (0.126 mg/day), 10×, and 108× relative rates to obtain a dose−response curve fitting a kinetic formation function. Naturally infested limbs of living avocado trees were wrapped with netting to exclude the possibility of catching emerging beetles on the encircling sticky traps. The results indicate PSHB are significantly attracted to infested limbs. Ethanol released over a 64-fold range (lowest rate of 7.5 mg/day) was moderately inhibitory of PSHB attraction to 1× quercivorol. β-caryophyllene and eucalyptol did not appear to affect attraction at the rates tested. A field test of potential inhibitors of 1× quercivorol was done using ~1 mg/day releases of monoterpene ketones: (−)-(S)-verbenone, (+)-(R)-verbenone, 3-methyl-2-cyclo-hexen-1-one (MCH or seudenone), piperitone, (+)-(S)-carvone, and racemic cryptone. Only piperitone and the two enantiomers of verbenone were strongly inhibitory. A blend of piperitone and verbenone tested together at different distances (0, 0.5, 1, 2, and 4 m) from a 1× quercivorol baited sticky trap became increasingly ineffective in inhibiting the attractant as separation distance increased. Due to the relatively short-range repellency (<1 m), the inhibitors would need to be released from several places on each tree to effectively repel PSHB from avocado trees. Effective attraction radii, EAR, and circular EARc are estimated for the quercivorol baits released at 1×, 10× and 108× rates. Push-pull simulations of moving beetles were performed in 1 ha plots with 2, 4, or 16 traps of 10× EARc and 400 trees (0, 1, or 3 inhibitors per tree) of which ten had an infested limb (EARc = 0.5 m). The simulations indicate that push-pull methods would be more effective in reducing PSHB mating than simply using mass-trapping alone.
Birds Bug on Indirect Plant Defenses to Locate Insect PreyHiltpold, Ivan; Shriver, W.
2018 Journal of Chemical Ecology
doi: 10.1007/s10886-018-0962-0pmid: 29680974
It has long been thought that most birds do not use volatile cues to perceive their environment. Aside from some scavenging birds, this large group of vertebrates was believed to mostly rely on highly developed vision while foraging and there are relatively few studies exploring bird response to volatile organic compounds. In response to insect herbivory, plants release volatile organic compounds to attract parasitoids and predators of the pests. To test if insectivorous birds use herbivore-induced plant volatiles (HIPV), dispensers emitting a synthetic blend of HIPV typically emitted after insect herbivory were deployed in a maize field along with imitation clay caterpillars. Significantly more imitation insects were attacked by birds when located close to dispensers releasing HIPV than close to dispenser with organic solvent only. Seven times more peck marks, an index of avian predation, were counted on caterpillars in the vicinity of the HIPV dispensers than on insects close to control dispensers. This is the first field demonstration that insectivorous birds cue on HIPV to locate prey in agricultural settings. These results support the growing evidence that foraging birds exploit volatile cues. This more accurate understanding of their behavior will be important when implementing pest management program involving insectivorous birds.
Role of Plant Volatiles in Host Plant Recognition by Listronotus maculicollis (Coleoptera: Curculionidae)Kostromytska, Olga; Rodriguez-Saona, Cesar; Alborn, Hans; Koppenhöfer, Albrecht
2018 Journal of Chemical Ecology
doi: 10.1007/s10886-018-0964-ypmid: 29740738
The annual bluegrass weevil (ABW), Listronotus maculicollis Kirby, is an economically important pest of short cut turfgrass. Annual bluegrass, Poa annua L., is the most preferred and suitable host for ABW oviposition, larval survival and development. We investigated the involvement of grass volatiles in ABW host plant preference under laboratory and field conditions. First, ovipositional and feeding preferences of ABW adults were studied in a sensory deprivation experiment. Clear evidence of involvement of olfaction in host recognition by ABW was demonstrated. Poa annua was preferred for oviposition over three bentgrasses, Agrostis spp., but weevils with blocked antennae did not exhibit significant preferences. ABW behavioral responses to volatiles emitted by Agrostis spp. and P. annua were examined in Y-tube olfactometer assays. Poa annua was attractive to ABW females and preferred to Agrostis spp. cultivars in Y-tube assays. Headspace volatiles emitted by P. annua and four cultivars of Agrostis stolonifera L. and two each of A. capillaris L. and A. canina L. were extracted, identified and compared. No P. annua specific volatiles were found, but Agrostis spp. tended to have larger quantities of terpenoids than P. annua. (Z)-3-hexenyl acetate, phenyl ethyl alcohol and their combination were the most attractive compounds to ABW females in laboratory Y-tube assays. The combination of these compounds as a trap bait in field experiments attracted adults during the spring migration, but was ineffective once the adults were on the short-mown turfgrass. Hence, their usefulness for monitoring weevil populations needs further investigation.
Biocommunication between Plants and Pollinating Insects through Fluorescence of Pollen and AnthersMori, Shinnosuke; Fukui, Hiroshi; Oishi, Masanori; Sakuma, Masayuki; Kawakami, Mari; Tsukioka, Junko; Goto, Katsumi; Hirai, Nobuhiro
2018 Journal of Chemical Ecology
doi: 10.1007/s10886-018-0958-9pmid: 29717395
Flowering plants attract pollinators via various stimuli such as odor, color, and shape. Factors determining the foraging behavior of pollinators remain a major theme in ecological and evolutionary research, although the floral traits and cognitive ability of pollinators have been investigated for centuries. Here we show that the autofluorescence emitted from pollen and anthers under UV irradiation may act as another attractant for flower-visiting insects. We have identified fluorescent compounds from pollen and anthers of five plant species as hydroxycinnamoyl derivatives. The fluorescent compounds are also shown to quench UV energy and exhibit antioxidant activity, indicating a function as protectants of pollen genes from UV-induced damage. A two-choice assay using honeybees in the field demonstrated that they perceived the blue fluorescence emitted from the fluorescent compounds and were attracted to it. This result suggested that the fluorescence from pollen and anthers serves as a visual cue to attract pollinators under sunlight.
Engelmann Spruce Chemotypes in Colorado and their Effects on Symbiotic Fungi Associated with the North American Spruce BeetleDavis, Thomas; Horne, Fiona; Yetter, Jens; Stewart, Jane
2018 Journal of Chemical Ecology
doi: 10.1007/s10886-018-0961-1pmid: 29679267
Conifer secondary metabolites play a key role in mechanisms of resistance to biotic disturbance, especially by bark beetles and beetle-associated microorganisms. Here, we describe variation in constitutive monoterpenes isolated from Engelmann spruce, Picea engelmannii, phloem across fourteen high-elevation populations in the Rocky Mountains of Colorado, and test interactions between phloem monoterpenes and an endophloedic symbiotic fungus, Leptographium abietinum, associated with the North American spruce beetle, Dendroctonus rufipennis. We consistently identified ten monoterpenes in Engelmann spruce phloem, and the trees in our samples could be classified into two geographically interspersed chemical phenotypes, or ‘chemotypes’: one in which α- and β-pinene were the most abundant monoterpenes, and one in which 3-carene was the most abundant monoterpene. Media amended with low concentrations of α-pinene, β-pinene, 3-carene, myrcene, and terpinolene stimulated growth of L. abietinum. Increasing monoterpene concentrations uniformly retarded fungal growth. Linalool completely suppressed fungal growth at all concentrations, while terpinolene completely suppressed growth at low and intermediate concentrations, indicating relatively high toxicity of these compounds. Tests with monoterpene blends representing the ‘average’ monoterpene composition of each chemotype indicated that representative chemotypes are equivalent in fungistatic activity, with chemotype blends being inhibitory even at low concentrations. Total constitutive monoterpene abundances in Engelmann spruce phloem ranged from 42 to 1796 μg/g. Induction of Engelmann spruce phloem monoterpenes in response to L. abietinum or other biotic agents has yet to be quantified, but is important for further understanding Engelmann spruce resistance to the D. rufipennis-L. abietinum complex.
Mechanism of Resistance to Camptothecin, a Cytotoxic Plant Secondary Metabolite, by Lymantria sp. LarvaeSajitha, T.; Manjunatha, B.; Siva, R.; Gogna, Navdeep; Dorai, Kavita; Ravikanth, G.; Uma Shaanker, R.
2018 Journal of Chemical Ecology
doi: 10.1007/s10886-018-0960-2pmid: 29797164
Camptothecin (CPT), a monoterpene indole alkaloid, is a potent inhibitor of eukaryotic topoisomerase I (Top 1). Because of this property, several derivatives of CPT are widely used as chemotherapeutic agents. The compound is produced by several plant species, including Nothapodytes nimmoniana (Family: Icacinaceae) presumably as a deterrent to insect pests. Here, we report, a lepidopteran larva, Lymantria sp. of Lymantriidae family which feeds voraciously on the leaves of N. nimmoniana, without any adverse consequences. Larval body weight and molting period were unaffected despite captive feeding of the larva with CPT enriched leaves. Mass spectrometric analysis indicated that nearly 46% of the ingested CPT was excreted while the rest was sequestered predominantly in the exuviae and setae (~35%). Although most of the CPT was in the parental form as found in the plant, traces of inactive, sulfated forms of CPT were recovered from the larva. Compared to that in plant, there were no critical mutations at the CPT binding domain of the insect’s Top 1. The gut pH of the larva was alkaline (pH 10.0). The alkaline gut environment converts CPT from its active, lactone form to inactive, carboxylate form. It is likely that such conversion might help the larva to reduce the overall burden of CPT in its gut. We discuss the results in the context of the mechanisms of resistance adapted by insects to plant toxins.