journal article
LitStream Collection
Construction of three-level factorial designs with general minimum lower-order confounding via resolution IV designs
Zhang, Tian-fang; Duan, Yingxing; Zhao, Shengli; Li, Zhiming
2024 Metrika
doi: 10.1007/s00184-024-00972-2
The general minimum lower order confounding (GMC) is a criterion for selecting designs when the experimenter has prior information about the order of the importance of the factors. The paper considers the construction of 3n-m\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$3^{n-m}$$\end{document} designs under the GMC criterion. Based on some theoretical results, it proves that some large GMC 3n-m\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$3^{n-m}$$\end{document} designs can be obtained by combining some small resolution IV designs T. All the results for 4≤#{T}≤20\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$4\le \#\{T\} \le 20$$\end{document} are tabulated in the table, where #\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\#$$\end{document} means the cardinality of a set.