Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Cell cycle changes in water properties in sea urchin eggs

Cell cycle changes in water properties in sea urchin eggs 10.1002/jcp.1041330103.abs This study concerned changes in the motional properties of cellular water during the first cell cycle of fertilized sea urchin eggs (Lytechinus variegatus). There was a significant decrease in proton NMR T1 relaxation time and in cytoplasmic ice crystal growth during mitosis and a significant increase in T1 time and cytoplasmic ice crystal size during cleavage. This was not caused by egg water content changes as reflected by egg volume measurements. Removal of both the fertilization membrane and the hyaline layer shortly after fertilization did not alter the pattern of T1 time changes at mitosis and cleavage as compared to whole eggs; thus, the pattern of T1 time changes was attributed to intracellular events. Treatment of fertilized eggs with cytochalasin B, an inhibitor of actin polymerization, did not block the fall in T1 time at mitosis, but did block cytokinesis and the increase in T1 time, which normally occurred at cleavage. A significant pattern of actin disassembly and reassembly at mitosis and cytokinesis was found by studies on the total amount of monomeric actin (G actin) using the DNase I assay. This led to the hypothesis that the observed changes in T1 time and ice crystal size during the first cell cycle were due to the depolymerization and polymerization of cytoplasmic actin. To test this, the effect of the in vitro polymerization of purified actin on the T1 time and on ice crystal growth was examined. It was concluded that changes in the T1 time and ice crystal growth upon polymerization of actin in vitro resembled the changes seen in vivo. These results suggest that changes in the motional properties of cytoplasmic water during the first cell cycle are due, at least in part, to the state of polymerization of cytoplasmic actin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cellular Physiology Wiley

Loading next page...
 
/lp/wiley/cell-cycle-changes-in-water-properties-in-sea-urchin-eggs-eokwQbOAcg

References (29)

Publisher
Wiley
Copyright
Copyright © 1987 Wiley‐Liss, Inc.
ISSN
0021-9541
eISSN
1097-4652
DOI
10.1002/jcp.1041330103
pmid
3667701
Publisher site
See Article on Publisher Site

Abstract

10.1002/jcp.1041330103.abs This study concerned changes in the motional properties of cellular water during the first cell cycle of fertilized sea urchin eggs (Lytechinus variegatus). There was a significant decrease in proton NMR T1 relaxation time and in cytoplasmic ice crystal growth during mitosis and a significant increase in T1 time and cytoplasmic ice crystal size during cleavage. This was not caused by egg water content changes as reflected by egg volume measurements. Removal of both the fertilization membrane and the hyaline layer shortly after fertilization did not alter the pattern of T1 time changes at mitosis and cleavage as compared to whole eggs; thus, the pattern of T1 time changes was attributed to intracellular events. Treatment of fertilized eggs with cytochalasin B, an inhibitor of actin polymerization, did not block the fall in T1 time at mitosis, but did block cytokinesis and the increase in T1 time, which normally occurred at cleavage. A significant pattern of actin disassembly and reassembly at mitosis and cytokinesis was found by studies on the total amount of monomeric actin (G actin) using the DNase I assay. This led to the hypothesis that the observed changes in T1 time and ice crystal size during the first cell cycle were due to the depolymerization and polymerization of cytoplasmic actin. To test this, the effect of the in vitro polymerization of purified actin on the T1 time and on ice crystal growth was examined. It was concluded that changes in the T1 time and ice crystal growth upon polymerization of actin in vitro resembled the changes seen in vivo. These results suggest that changes in the motional properties of cytoplasmic water during the first cell cycle are due, at least in part, to the state of polymerization of cytoplasmic actin.

Journal

Journal of Cellular PhysiologyWiley

Published: Oct 1, 1987

There are no references for this article.