Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Organizing principles for single-joint movements. IV. Implications for isometric contractions

Organizing principles for single-joint movements. IV. Implications for isometric contractions Abstract 1. Normal human subjects made isometric pulse and step contractions about the elbow to visually defined target torques of different amplitudes and at different rates. We measured joint torque and electromyograms (EMG) from two agonist and two antagonist muscles. 2. When the task specification requires that the subject explicitly alter the rate at which torque is increased, the rates of rise of the agonist and antagonist EMG bursts covary with the rate of rise of the torque. For pulses of torque the duration of motoneuron excitation varies with the duration of the task-defined contractile event. 3. When a subject is asked to generate torques of different amplitudes without specifying a time interval, torque amplitude is positively correlated with how long, and therefore how high, the EMG rose. Subjects usually proportionately covary the strength of the agonist and antagonist contractions but are not constrained to do so. Some subjects use a strategy of varying the antagonist inversely with the agonist contraction. 4. We extend the organizing principles for the control of movement about a single joint to the control of isometric torque. These rules state that control of torque about a single joint is exercised by one of two strategies: the speed-sensitive strategy modulates the rate at which contraction rises by varying the intensity of motoneuron-pool excitation. The speed-insensitive strategy varies the duration over which contraction rises but does not change the rate. These two respective patterns of torque emerge from pulse-height and pulse-width modulation of motoneuron-pool excitation. 5. The rules defining speed-sensitive and speed-insensitive strategies for movements are broadened for isometric contractions because of the wider range of torque patterns that we observe under these conditions. We propose a step-excitation component for prolonged isometric step contractions and slowly rising ramp patterns of excitation for contractions that develop over several hundreds of milliseconds. 6. The choice of strategies is based on task-specific torque requirements. The same two strategies that control torque to produce movement apply to the control of isometric torque. Unlike movements, however, isometric tasks are more often controlled by a blending of the two patterns. Possible reasons for this are discussed. Copyright © 1990 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Organizing principles for single-joint movements. IV. Implications for isometric contractions

Loading next page...
 
/lp/the-american-physiological-society/organizing-principles-for-single-joint-movements-iv-implications-for-J7H8Np5L3O

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 1990 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. Normal human subjects made isometric pulse and step contractions about the elbow to visually defined target torques of different amplitudes and at different rates. We measured joint torque and electromyograms (EMG) from two agonist and two antagonist muscles. 2. When the task specification requires that the subject explicitly alter the rate at which torque is increased, the rates of rise of the agonist and antagonist EMG bursts covary with the rate of rise of the torque. For pulses of torque the duration of motoneuron excitation varies with the duration of the task-defined contractile event. 3. When a subject is asked to generate torques of different amplitudes without specifying a time interval, torque amplitude is positively correlated with how long, and therefore how high, the EMG rose. Subjects usually proportionately covary the strength of the agonist and antagonist contractions but are not constrained to do so. Some subjects use a strategy of varying the antagonist inversely with the agonist contraction. 4. We extend the organizing principles for the control of movement about a single joint to the control of isometric torque. These rules state that control of torque about a single joint is exercised by one of two strategies: the speed-sensitive strategy modulates the rate at which contraction rises by varying the intensity of motoneuron-pool excitation. The speed-insensitive strategy varies the duration over which contraction rises but does not change the rate. These two respective patterns of torque emerge from pulse-height and pulse-width modulation of motoneuron-pool excitation. 5. The rules defining speed-sensitive and speed-insensitive strategies for movements are broadened for isometric contractions because of the wider range of torque patterns that we observe under these conditions. We propose a step-excitation component for prolonged isometric step contractions and slowly rising ramp patterns of excitation for contractions that develop over several hundreds of milliseconds. 6. The choice of strategies is based on task-specific torque requirements. The same two strategies that control torque to produce movement apply to the control of isometric torque. Unlike movements, however, isometric tasks are more often controlled by a blending of the two patterns. Possible reasons for this are discussed. Copyright © 1990 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Sep 1, 1990

There are no references for this article.