Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Ionic channels in epithelial cell membranes

Ionic channels in epithelial cell membranes Abstract This review focused on results obtained with methods that allow studies of ionic channels in situ, namely, patch clamping and current-noise analysis. We reported findings for ionic channels in apical and basolateral plasma membranes of various tight and leaky epithelia from a wide range of animal species and tissues. As for ionic channel "species," we restricted ourselves to the discussion of cation-specific (Na+ or K+), hybrid (Na+ and K+), and Cl- channels. For the K+-specific channels it can be said that their properties in conduction (multisite, single file), selectivity (only "K+-like" cations), and blocking behavior (Ba2+, Cs+, TEA) much resemble those observed for K+ channels in excitable membranes. This seems to include also the Ca2+-activated "maxi" K+ channel. Thus, K+ channels in excitable membranes and K+ channels in epithelia appear to be very closely related in their basic structural principles. This is, however, not at all unexpected, because K+ channels provide the dominant permeability characteristics of nearly all plasma membranes from symmetrical and epithelial cells. An exception is, of course, apical membranes of tight epithelia whose duty is Na+ absorption against large electrochemical gradients in a usually anisosmotic environment. Here, Na+ channels dominate, although a minor fraction of membrane permeability comes from K+ channels, as in frog skin, colon, or distal nephron. Epithelial Na+ channels are different from excitable Na+ channels in that they 1) are far more selective and 2) seem to be chemically rather than electrically gated. Furthermore, their specific blockers belong to very different chemical families, although a guanidinium/amidinium moiety is a common feature (TTX vs. amiloride). For a more detailed summary of Na+ channel properties see sect. IV H. Most interesting is the occurrence of relatively nonselective cationic (hybrid) channels in apical membranes of tight epithelia, like larval or adult frog skin. Here, not only the weak selectivity is astonishing but also the fact that these channels react with so-called K+-channel-specific (Ba2+, TEA) as well as with Na+-channel-specific (amiloride, BIG) compounds. Moreover, this cross-reactivity does not seem to be inhibitory but, on the contrary, stimulating. Clearly these channels may become a fascinating object with which to assess whether Na+ and K+ channels are not only structurally but also genetically related and whether they can somehow be converted into each other.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1985 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physiological Reviews The American Physiological Society

Ionic channels in epithelial cell membranes

Physiological Reviews , Volume 65 (4): 833 – Oct 1, 1985

Loading next page...
 
/lp/the-american-physiological-society/ionic-channels-in-epithelial-cell-membranes-Pi0NvANUfQ

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 1985 the American Physiological Society
ISSN
0031-9333
eISSN
1522-1210
Publisher site
See Article on Publisher Site

Abstract

Abstract This review focused on results obtained with methods that allow studies of ionic channels in situ, namely, patch clamping and current-noise analysis. We reported findings for ionic channels in apical and basolateral plasma membranes of various tight and leaky epithelia from a wide range of animal species and tissues. As for ionic channel "species," we restricted ourselves to the discussion of cation-specific (Na+ or K+), hybrid (Na+ and K+), and Cl- channels. For the K+-specific channels it can be said that their properties in conduction (multisite, single file), selectivity (only "K+-like" cations), and blocking behavior (Ba2+, Cs+, TEA) much resemble those observed for K+ channels in excitable membranes. This seems to include also the Ca2+-activated "maxi" K+ channel. Thus, K+ channels in excitable membranes and K+ channels in epithelia appear to be very closely related in their basic structural principles. This is, however, not at all unexpected, because K+ channels provide the dominant permeability characteristics of nearly all plasma membranes from symmetrical and epithelial cells. An exception is, of course, apical membranes of tight epithelia whose duty is Na+ absorption against large electrochemical gradients in a usually anisosmotic environment. Here, Na+ channels dominate, although a minor fraction of membrane permeability comes from K+ channels, as in frog skin, colon, or distal nephron. Epithelial Na+ channels are different from excitable Na+ channels in that they 1) are far more selective and 2) seem to be chemically rather than electrically gated. Furthermore, their specific blockers belong to very different chemical families, although a guanidinium/amidinium moiety is a common feature (TTX vs. amiloride). For a more detailed summary of Na+ channel properties see sect. IV H. Most interesting is the occurrence of relatively nonselective cationic (hybrid) channels in apical membranes of tight epithelia, like larval or adult frog skin. Here, not only the weak selectivity is astonishing but also the fact that these channels react with so-called K+-channel-specific (Ba2+, TEA) as well as with Na+-channel-specific (amiloride, BIG) compounds. Moreover, this cross-reactivity does not seem to be inhibitory but, on the contrary, stimulating. Clearly these channels may become a fascinating object with which to assess whether Na+ and K+ channels are not only structurally but also genetically related and whether they can somehow be converted into each other.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1985 the American Physiological Society

Journal

Physiological ReviewsThe American Physiological Society

Published: Oct 1, 1985

There are no references for this article.