Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress

Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal... Abstract Arctic charr is an especially attractive aquaculture species given that it features the desirable tissue traits of other salmonids and is bred and grown at inland freshwater tank farms year round. It is of interest to develop upper temperature tolerant (UTT) strains of Arctic charr to increase the robustness of the species in the face of climate change and to enable production in more southern regions. We used a genomics approach that takes advantage of the well-studied Atlantic salmon genome to identify genes that are associated with UTT in Arctic charr. Specifically, we conducted an acute temperature trial to identify temperature tolerant and intolerant Arctic charr individuals, which were subject to microarray and qPCR analysis to identify candidate UTT genes. These were compared with genes annotated in a quantitative trait locus (QTL) region that was previously identified as associated with UTT in rainbow trout and Arctic charr and that we sequenced in Atlantic salmon. Our results suggest that small heat shock proteins as well as HSP-90 genes are associated with UTT. Furthermore, hemoglobin expression was significantly downregulated in tolerant compared with intolerant fish. Finally, QTL analysis and expression profiling identified COUP-TFII as a candidate UTT gene, although its specific role is unclear given the identification of two transcripts, which appear to have different expression patterns. Our results highlight the importance of using more than one approach to identify candidate genes, particularly when examining a complicated trait such as UTT in a highly complex genome for which there is no reference genome. broodstock development expression profiling upper temperature tolerance quantitative trait locus analysis Footnotes Copyright © 2011 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physiological Genomics The American Physiological Society

Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress

Loading next page...
 
/lp/the-american-physiological-society/identification-of-genes-associated-with-heat-tolerance-in-arctic-charr-C06Z7fE8sP

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
1094-8341
eISSN
1531-2267
DOI
10.1152/physiolgenomics.00008.2011
pmid
21467159
Publisher site
See Article on Publisher Site

Abstract

Abstract Arctic charr is an especially attractive aquaculture species given that it features the desirable tissue traits of other salmonids and is bred and grown at inland freshwater tank farms year round. It is of interest to develop upper temperature tolerant (UTT) strains of Arctic charr to increase the robustness of the species in the face of climate change and to enable production in more southern regions. We used a genomics approach that takes advantage of the well-studied Atlantic salmon genome to identify genes that are associated with UTT in Arctic charr. Specifically, we conducted an acute temperature trial to identify temperature tolerant and intolerant Arctic charr individuals, which were subject to microarray and qPCR analysis to identify candidate UTT genes. These were compared with genes annotated in a quantitative trait locus (QTL) region that was previously identified as associated with UTT in rainbow trout and Arctic charr and that we sequenced in Atlantic salmon. Our results suggest that small heat shock proteins as well as HSP-90 genes are associated with UTT. Furthermore, hemoglobin expression was significantly downregulated in tolerant compared with intolerant fish. Finally, QTL analysis and expression profiling identified COUP-TFII as a candidate UTT gene, although its specific role is unclear given the identification of two transcripts, which appear to have different expression patterns. Our results highlight the importance of using more than one approach to identify candidate genes, particularly when examining a complicated trait such as UTT in a highly complex genome for which there is no reference genome. broodstock development expression profiling upper temperature tolerance quantitative trait locus analysis Footnotes Copyright © 2011 the American Physiological Society

Journal

Physiological GenomicsThe American Physiological Society

Published: Jun 1, 2011

There are no references for this article.