Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Human Lumbosacral Spinal Cord Interprets Loading During Stepping

Human Lumbosacral Spinal Cord Interprets Loading During Stepping Abstract Harkema, Susan J., Seanna L. Hurley, Uday K. Patel, Philip S. Requejo, Bruce H. Dobkin, and V. Reggie Edgerton. Human lumbosacral spinal cord interprets loading during stepping. J. Neurophysiol. 77: 797–811, 1997. Studies suggest that the human lumbosacral spinal cord can generate steplike oscillating electromyographic (EMG) patterns, but it remains unclear to what degree these efferent patterns depend on the phasic peripheral sensory information associated with bilateral limb movements and loading. We examined the role of sensory information related to lower-extremity weight bearing in modulating the efferent motor patterns of spinal-cord-injured (SCI) subjects during manually assisted stepping on a treadmill. Four nonambulatory subjects, each with a chronic thoracic spinal cord injury, and two nondisabled subjects were studied. The level of loading, EMG patterns, and kinematics of the lower limbs were studied during manually assisted or unassisted stepping on a treadmill with body weight support. The relationships among lumbosacral motor pool activity soleus (SOL), medial gastrocnemius (MG), and tibialis anterior (TA), limb load, muscle-tendon length, and velocity of muscle-tendon length change were examined. The EMG mean amplitude of the SOL, MG, and TA was directly related to the peak load per step on the lower limb during locomotion. The effects on the EMG amplitude were qualitatively similar in subjects with normal, partial, or no detectable supraspinal input. Responses were most consistent in the SOL and MG at load levels of <50% of a subject's body weight. The modulation of the EMG amplitude from the SOL and MG, both across steps and within a step, was more closely associated with limb peak load than muscle-tendon stretch or the velocity of muscle-tendon stretch. Thus stretch reflexes were not the sole source of the phasic EMG activity in flexors and extensors during manually assisted stepping in SCI subjects. The EMG amplitude within a step was highly dependent on the phase of the step cycle regardless of level of load. These data suggest that level of loading on the lower limbs provides cues that enable the human lumbosacral spinal cord to modulate efferent output in a manner that may facilitate the generation of stepping. These data provide a rationale for gait rehabilitation strategies that utilize the level of load-bearing stepping to enhance the locomotor capability of SCI subjects. Footnotes Address for reprint requests: V. R. Edgerton, 2322 Life Sciences, Dept. of Physiological Science, UCLA, Los Angeles, CA 90095-1527. Copyright © 1997 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Human Lumbosacral Spinal Cord Interprets Loading During Stepping

Loading next page...
 
/lp/the-american-physiological-society/human-lumbosacral-spinal-cord-interprets-loading-during-stepping-NHmsIuX9M9

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract Harkema, Susan J., Seanna L. Hurley, Uday K. Patel, Philip S. Requejo, Bruce H. Dobkin, and V. Reggie Edgerton. Human lumbosacral spinal cord interprets loading during stepping. J. Neurophysiol. 77: 797–811, 1997. Studies suggest that the human lumbosacral spinal cord can generate steplike oscillating electromyographic (EMG) patterns, but it remains unclear to what degree these efferent patterns depend on the phasic peripheral sensory information associated with bilateral limb movements and loading. We examined the role of sensory information related to lower-extremity weight bearing in modulating the efferent motor patterns of spinal-cord-injured (SCI) subjects during manually assisted stepping on a treadmill. Four nonambulatory subjects, each with a chronic thoracic spinal cord injury, and two nondisabled subjects were studied. The level of loading, EMG patterns, and kinematics of the lower limbs were studied during manually assisted or unassisted stepping on a treadmill with body weight support. The relationships among lumbosacral motor pool activity soleus (SOL), medial gastrocnemius (MG), and tibialis anterior (TA), limb load, muscle-tendon length, and velocity of muscle-tendon length change were examined. The EMG mean amplitude of the SOL, MG, and TA was directly related to the peak load per step on the lower limb during locomotion. The effects on the EMG amplitude were qualitatively similar in subjects with normal, partial, or no detectable supraspinal input. Responses were most consistent in the SOL and MG at load levels of <50% of a subject's body weight. The modulation of the EMG amplitude from the SOL and MG, both across steps and within a step, was more closely associated with limb peak load than muscle-tendon stretch or the velocity of muscle-tendon stretch. Thus stretch reflexes were not the sole source of the phasic EMG activity in flexors and extensors during manually assisted stepping in SCI subjects. The EMG amplitude within a step was highly dependent on the phase of the step cycle regardless of level of load. These data suggest that level of loading on the lower limbs provides cues that enable the human lumbosacral spinal cord to modulate efferent output in a manner that may facilitate the generation of stepping. These data provide a rationale for gait rehabilitation strategies that utilize the level of load-bearing stepping to enhance the locomotor capability of SCI subjects. Footnotes Address for reprint requests: V. R. Edgerton, 2322 Life Sciences, Dept. of Physiological Science, UCLA, Los Angeles, CA 90095-1527. Copyright © 1997 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Feb 1, 1997

There are no references for this article.