Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Expression and functional significance of NADPH oxidase 5 (Nox5) and its splice variants in human blood vessels

Expression and functional significance of NADPH oxidase 5 (Nox5) and its splice variants in human... The expression and functional significance of NADPH oxidase 5 (Nox5) and its five isoforms in vascular cells is poorly understood. The goal of this study was to determine whether Nox5-α, -β, -δ, -γ, and -ε (short) are expressed in human blood vessels and evaluate their respective functions. Nox5 mRNA and protein were detected in human blood vessels, cultured human vascular smooth muscle (HVSMC) and endothelium, but not fibroblasts. The most abundant isoforms were α and β, whereas δ and γ were not detected. Nox5-α and -β produced reactive oxygen species (ROS), but -δ, -γ, and -ε were not catalytically active. Coexpression of the active Nox5 isoforms with inactive Nox5 variants suppressed ROS production, and coimmunoprecipitation revealed that Nox5-β binds the inactive ε variant, which may account for reduced ROS production. In HVSMC, angiotensin II, endothelin-1 and TNF-α increased endogenous Nox5 mRNA levels, while adenovirus-mediated overexpression of Nox5 promoted p38 MAPK, JAK2, JNK, and ERK1/2 phosphorylation in endothelial cells (EC), but only increased ERK1/2 phosphorylation in HVSMC. At higher levels of Nox5, there was evidence of increased apoptosis in EC, but not in HVSMC, as detected by the presence of cleaved caspase-3 and cleaved poly(ADP-ribose)polymerase. Although catalytically inactive, Nox5-ε potently activated ERK in HVSMC, and increased expression of Nox5-ε promoted HVSMC proliferation. Nox5 is expressed in human blood vessels. The Nox5-α and -β splice variants are the major isoforms that are expressed and the only variants capable of ROS production. Nox5-ε can inhibit Nox5 activity and activate ERK and HVSMC proliferation. Nox5 splice variants reactive oxygen species extracellular signal-regulated kinase Copyright © 2012 the American Physiological Society « Previous | Next Article » Table of Contents This Article Published online before print March 16, 2012 , doi: 10.​1152/​ajpheart.​00910.​2011 AJP - Heart May 15, 2012 vol. 302 no. 10 H1919-H1928 » Abstract Free Full Text Free to you Full Text (PDF) Free to you All Versions of this Article: ajpheart.00910.2011v1 302/10/H1919 most recent Classifications Vascular Biology and Microcirculation Services Email this article to a friend Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Download to citation manager Citing Articles Load citing article information Citing articles via Web of Science Google Scholar Articles by Pandey, D. Articles by Fulton, D. J. R. PubMed PubMed citation Articles by Pandey, D. Articles by Fulton, D. J. R. Related Content Vascular Biology and Microcirculation Load related web page information Current Content Alert me to new issues of AJP - Heart About the Journal Information for Authors Submit a Manuscript Ethical Policies AuthorChoice PubMed Central Policy Reprints and Permissions Advertising Press Copyright © 2012 the American Physiological Society Print ISSN: 0363-6135 Online ISSN: 1522-1539 var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-2924550-1"); pageTracker._trackPageview(); } catch(err) {} var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-30"); pageTracker._setDomainName(".physiology.org"); pageTracker._trackPageview(); } catch(err) {} http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AJP - Heart and Circulatory Physiology The American Physiological Society

Loading next page...
 
/lp/the-american-physiological-society/expression-and-functional-significance-of-nadph-oxidase-5-nox5-and-its-p0DeI7YfdL

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 2012 the American Physiological Society
ISSN
0363-6135
eISSN
1522-1539
DOI
10.1152/ajpheart.00910.2011
pmid
22427510
Publisher site
See Article on Publisher Site

Abstract

The expression and functional significance of NADPH oxidase 5 (Nox5) and its five isoforms in vascular cells is poorly understood. The goal of this study was to determine whether Nox5-α, -β, -δ, -γ, and -ε (short) are expressed in human blood vessels and evaluate their respective functions. Nox5 mRNA and protein were detected in human blood vessels, cultured human vascular smooth muscle (HVSMC) and endothelium, but not fibroblasts. The most abundant isoforms were α and β, whereas δ and γ were not detected. Nox5-α and -β produced reactive oxygen species (ROS), but -δ, -γ, and -ε were not catalytically active. Coexpression of the active Nox5 isoforms with inactive Nox5 variants suppressed ROS production, and coimmunoprecipitation revealed that Nox5-β binds the inactive ε variant, which may account for reduced ROS production. In HVSMC, angiotensin II, endothelin-1 and TNF-α increased endogenous Nox5 mRNA levels, while adenovirus-mediated overexpression of Nox5 promoted p38 MAPK, JAK2, JNK, and ERK1/2 phosphorylation in endothelial cells (EC), but only increased ERK1/2 phosphorylation in HVSMC. At higher levels of Nox5, there was evidence of increased apoptosis in EC, but not in HVSMC, as detected by the presence of cleaved caspase-3 and cleaved poly(ADP-ribose)polymerase. Although catalytically inactive, Nox5-ε potently activated ERK in HVSMC, and increased expression of Nox5-ε promoted HVSMC proliferation. Nox5 is expressed in human blood vessels. The Nox5-α and -β splice variants are the major isoforms that are expressed and the only variants capable of ROS production. Nox5-ε can inhibit Nox5 activity and activate ERK and HVSMC proliferation. Nox5 splice variants reactive oxygen species extracellular signal-regulated kinase Copyright © 2012 the American Physiological Society « Previous | Next Article » Table of Contents This Article Published online before print March 16, 2012 , doi: 10.​1152/​ajpheart.​00910.​2011 AJP - Heart May 15, 2012 vol. 302 no. 10 H1919-H1928 » Abstract Free Full Text Free to you Full Text (PDF) Free to you All Versions of this Article: ajpheart.00910.2011v1 302/10/H1919 most recent Classifications Vascular Biology and Microcirculation Services Email this article to a friend Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Download to citation manager Citing Articles Load citing article information Citing articles via Web of Science Google Scholar Articles by Pandey, D. Articles by Fulton, D. J. R. PubMed PubMed citation Articles by Pandey, D. Articles by Fulton, D. J. R. Related Content Vascular Biology and Microcirculation Load related web page information Current Content Alert me to new issues of AJP - Heart About the Journal Information for Authors Submit a Manuscript Ethical Policies AuthorChoice PubMed Central Policy Reprints and Permissions Advertising Press Copyright © 2012 the American Physiological Society Print ISSN: 0363-6135 Online ISSN: 1522-1539 var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-2924550-1"); pageTracker._trackPageview(); } catch(err) {} var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-30"); pageTracker._setDomainName(".physiology.org"); pageTracker._trackPageview(); } catch(err) {}

Journal

AJP - Heart and Circulatory PhysiologyThe American Physiological Society

Published: May 15, 2012

There are no references for this article.