Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

What’s new in the renin-angiotensin system?

What’s new in the renin-angiotensin system? Angiotensin-converting enzyme (ACE) is a zinc- and chloride-dependent metallopeptidase that plays a vital role in the metabolism of biologically active peptides. Until recently, much of the inhibitor design and mechanism of action of this ubiquitous enzyme was based on the structures of carboxypeptidase A and thermolysin. When compared to the recently solved structures of the testis isoform of ACE (tACE) and its Drosophila homologue (AnCE), carboxypeptidase A showed little structural homology outside of the active site, while thermolysin revealed significant but less marked overall similarity. The ellipsoid-shaped structure of tACE, which has a preponderance of α-helices, is characterised by a core channel that has a constriction approximately 10 Å from its opening where the zinc-binding active site is located. Comparison of the native protein with the inhibitor-bound form (lisinopril-tACE) does not reveal any striking differences in the conformation of the inhibitor binding site, disfavouring an open and closed configuration. However, the inhibitor complex does provide insights into the network of hydrogen-bonding and ionic interactions in the active site as well as the mechanism of ACE substrate hydrolysis. The three-dimensional structure of ACE now paves the way for the rational design of a new generation of domain-selective ACE inhibitors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular and Molecular Life Sciences Springer Journals

What’s new in the renin-angiotensin system?

Loading next page...
 
/lp/springer-journals/what-s-new-in-the-renin-angiotensin-system-tv0AtI050n

References (48)

Publisher
Springer Journals
Copyright
Copyright © 2004 by Birkhäuser Verlag, Basel
Subject
Life Sciences; Biomedicine general; Life Sciences, general; Biochemistry, general; Cell Biology
ISSN
1420-682X
eISSN
1420-9071
DOI
10.1007/s00018-004-4239-0
pmid
15549168
Publisher site
See Article on Publisher Site

Abstract

Angiotensin-converting enzyme (ACE) is a zinc- and chloride-dependent metallopeptidase that plays a vital role in the metabolism of biologically active peptides. Until recently, much of the inhibitor design and mechanism of action of this ubiquitous enzyme was based on the structures of carboxypeptidase A and thermolysin. When compared to the recently solved structures of the testis isoform of ACE (tACE) and its Drosophila homologue (AnCE), carboxypeptidase A showed little structural homology outside of the active site, while thermolysin revealed significant but less marked overall similarity. The ellipsoid-shaped structure of tACE, which has a preponderance of α-helices, is characterised by a core channel that has a constriction approximately 10 Å from its opening where the zinc-binding active site is located. Comparison of the native protein with the inhibitor-bound form (lisinopril-tACE) does not reveal any striking differences in the conformation of the inhibitor binding site, disfavouring an open and closed configuration. However, the inhibitor complex does provide insights into the network of hydrogen-bonding and ionic interactions in the active site as well as the mechanism of ACE substrate hydrolysis. The three-dimensional structure of ACE now paves the way for the rational design of a new generation of domain-selective ACE inhibitors.

Journal

Cellular and Molecular Life SciencesSpringer Journals

Published: Jan 1, 2004

There are no references for this article.