Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Suppression of the transcallosal motor output: a transcranial magnetic stimulation study in healthy subjects

Suppression of the transcallosal motor output: a transcranial magnetic stimulation study in... We tested the hypothesis that transcranial magnetic stimulation (TMS), in addition to its inhibitory action on the corticospinal output, can also exert some inhibitory effect on the transcallosal system connecting the two motor cortices. In seven normal subjects, instructed to keep their right opponens pollicis (OP) muscle fully relaxed and their left OP muscle voluntarily contracted, we used a paired-pulse TMS protocol, to stimulate the left motor cortex. We evaluated the effect of low-intensity conditioning stimulation on the ipsilateral silent period (iSP) elicited by the subsequent test stimulus. Compelling evidence exists to support that this iSP is mediated by the activation of transcallosal motor fibres. Simultaneously, the inhibition of the motor evoked potential (MEP) in the right OP muscle was also investigated. At the interstimulus interval (ISI) of 3 ms, the iSP was significantly ( P <0.0001, repeated-measures ANOVA) suppressed by conditioning intensities ranging from 1.2 to 0.6 of MEP threshold. The assessment of the time-course showed that iSP inhibition was present in all the tested subjects only at ISIs of 2 and 3 ms (for each subject P <0.05, repeated-measures ANOVA). Several findings suggest that the suppression of iSP is brought about by the activation of inhibitory mechanisms operating in the stimulated (left) motor cortex. We propose that the assessment of iSP suppression could be a method to study the excitability of intracortical inhibitory circuits in the affected hemisphere of patients with unilateral damage of the corticospinal tract. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Brain Research Springer Journals

Suppression of the transcallosal motor output: a transcranial magnetic stimulation study in healthy subjects

Loading next page...
 
/lp/springer-journals/suppression-of-the-transcallosal-motor-output-a-transcranial-magnetic-JKtVu5f1CW

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag
Subject
LifeSciences
ISSN
0014-4819
eISSN
1432-1106
DOI
10.1007/s00221-004-1881-6
pmid
15118793
Publisher site
See Article on Publisher Site

Abstract

We tested the hypothesis that transcranial magnetic stimulation (TMS), in addition to its inhibitory action on the corticospinal output, can also exert some inhibitory effect on the transcallosal system connecting the two motor cortices. In seven normal subjects, instructed to keep their right opponens pollicis (OP) muscle fully relaxed and their left OP muscle voluntarily contracted, we used a paired-pulse TMS protocol, to stimulate the left motor cortex. We evaluated the effect of low-intensity conditioning stimulation on the ipsilateral silent period (iSP) elicited by the subsequent test stimulus. Compelling evidence exists to support that this iSP is mediated by the activation of transcallosal motor fibres. Simultaneously, the inhibition of the motor evoked potential (MEP) in the right OP muscle was also investigated. At the interstimulus interval (ISI) of 3 ms, the iSP was significantly ( P <0.0001, repeated-measures ANOVA) suppressed by conditioning intensities ranging from 1.2 to 0.6 of MEP threshold. The assessment of the time-course showed that iSP inhibition was present in all the tested subjects only at ISIs of 2 and 3 ms (for each subject P <0.05, repeated-measures ANOVA). Several findings suggest that the suppression of iSP is brought about by the activation of inhibitory mechanisms operating in the stimulated (left) motor cortex. We propose that the assessment of iSP suppression could be a method to study the excitability of intracortical inhibitory circuits in the affected hemisphere of patients with unilateral damage of the corticospinal tract.

Journal

Experimental Brain ResearchSpringer Journals

Published: Sep 1, 2004

There are no references for this article.