Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Signaling in the Chemosensory Systems

Signaling in the Chemosensory Systems The mammalian olfactory system is not uniformly organized but consists of several subsystems each of which probably serves distinct functions. Not only are the two major nasal chemosensory systems, the vomeronasal organ and the main olfactory epithelium, structurally and functionally separate entities, but the latter is further subcompartimentalized into overlapping expression zones and projection-related subzones. Moreover, the populations of ‘OR37’ neurons not only express a unique type of olfactory receptors but also are segregated in a cluster-like manner and generally project to only one receptor-specific glomerulus. The septal organ is an island of sensory epithelium on the nasal septum positioned at the nasoplatine duct; it is considered as a ‘mini-nose’ with dual function. A specific chemosensory function of the most recently discovered subsystem, the so-called Grueneberg ganglion, is based on the expression of olfactory marker protein and the axonal projections to defined glomeruli within the olfactory bulb. This complexity of distinct olfactory subsystems may be one of the features determining the enormous chemosensory capacity of the sense of smell. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular and Molecular Life Sciences Springer Journals

Signaling in the Chemosensory Systems

Loading next page...
 
/lp/springer-journals/signaling-in-the-chemosensory-systems-fBVxfOKYHf

References (84)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Birkhäuser Verlag, Basel
Subject
Life Sciences; Biomedicine general; Life Sciences, general; Biochemistry, general; Cell Biology
ISSN
1420-682X
eISSN
1420-9071
DOI
10.1007/s00018-006-6108-5
pmid
16732429
Publisher site
See Article on Publisher Site

Abstract

The mammalian olfactory system is not uniformly organized but consists of several subsystems each of which probably serves distinct functions. Not only are the two major nasal chemosensory systems, the vomeronasal organ and the main olfactory epithelium, structurally and functionally separate entities, but the latter is further subcompartimentalized into overlapping expression zones and projection-related subzones. Moreover, the populations of ‘OR37’ neurons not only express a unique type of olfactory receptors but also are segregated in a cluster-like manner and generally project to only one receptor-specific glomerulus. The septal organ is an island of sensory epithelium on the nasal septum positioned at the nasoplatine duct; it is considered as a ‘mini-nose’ with dual function. A specific chemosensory function of the most recently discovered subsystem, the so-called Grueneberg ganglion, is based on the expression of olfactory marker protein and the axonal projections to defined glomeruli within the olfactory bulb. This complexity of distinct olfactory subsystems may be one of the features determining the enormous chemosensory capacity of the sense of smell.

Journal

Cellular and Molecular Life SciencesSpringer Journals

Published: May 29, 2006

There are no references for this article.