Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Population structure and energetics of the shallow-water antarctic sea star Odontaster validus in contrasting habitats

Population structure and energetics of the shallow-water antarctic sea star Odontaster validus in... 227 99 99 2 2 J. B. McClintock J. S. Pearse I. Bosch Institute of Marine Sciences and Biology Board of Studies University of California 95064 Santa Cruz California USA Department of Biology University of Alabama at Birmingham, University Station 35294 Birmingham Alabama USA Abstract Individuals and populations of Odontaster validus Koehler differed markedly among different habitats, as revealed in a study from October 1984 through January 1986 in McMurdo Sound, Antarctica. At McMurdo Station, individual sizes (wet weight) and population biomass (g wet wt m -2 and kJ m -2 ) decreased significantly with increasing depth. Individuals from shallow (10 to 20 m) habitats were in superior nutritional condition to those from deeper water (30 and 165 m), as shown by higher gonad and pyloric cecum indexes, and by higher lipid and energetic levels in the pyloric ceca. Moreover, gonadal output (reproductive output) was higher in shallow-water individuals. Higher levels of chlorophyll in the pyloric ceca and richer yellow to red coloration of the body wall in the shallow-water individuals indicate that they utilize the higher levels of primary production at shallow depths. At East Cape Armitage, where nearly permanent, thick, snow-covered ice most of the year resulted in very low levels of benthic primary production, the lowdensity sea stars were all very small and nutritionally similar to the deep-water individuals at McMurdo Station. At Cape Evans, where the generally snow-free sea-ice that broke up in mid-summer resulted in a luxurient benthic cover of diatoms and macroalgae, the sea stars were smaller than at McMurdo Station at comparable depths, but population densities were higher, resulting in 4 to 9 times greater biomass. Growth rates of sea stars fed in the laboratory were very low, especially compared to laboratory-reared temperate and tropical species; well-fed individuals need about 9 yr to reach 30 g wet weight, near the mean size of shallowwater individuals at McMurdo Station. No growth was detected in individuals caged at McMurdo Station for one year, suggesting even lower growth rates in the field. The stable size-frequency distributions at the different sites and depths throughout the year-long study suggest highly stable populations with low temporal variability in recruitment, migration and mortality. These data indicate that individuals and populations of O. validus quantitatively and qualitatively reflect the general level of productivity of a habitat. Differences noted in size, coloration, nutrition, and reproductive effort may be the result of long-term integration of local levels of primary production. These ubiquitous sea stars may serve as a biotic indicator of productivity in localized habitats around the continental shelf of Antarctica. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Biology Springer Journals

Population structure and energetics of the shallow-water antarctic sea star Odontaster validus in contrasting habitats

Marine Biology , Volume 99 (2) – Sep 1, 1988

Loading next page...
 
/lp/springer-journals/population-structure-and-energetics-of-the-shallow-water-antarctic-sea-vx7BX9sbEw

References (51)

Publisher
Springer Journals
Copyright
Copyright © 1988 by Springer-Verlag
Subject
Life Sciences; Biomedicine general; Oceanography; Ecology; Microbiology; Zoology
ISSN
0025-3162
eISSN
1432-1793
DOI
10.1007/BF00391986
Publisher site
See Article on Publisher Site

Abstract

227 99 99 2 2 J. B. McClintock J. S. Pearse I. Bosch Institute of Marine Sciences and Biology Board of Studies University of California 95064 Santa Cruz California USA Department of Biology University of Alabama at Birmingham, University Station 35294 Birmingham Alabama USA Abstract Individuals and populations of Odontaster validus Koehler differed markedly among different habitats, as revealed in a study from October 1984 through January 1986 in McMurdo Sound, Antarctica. At McMurdo Station, individual sizes (wet weight) and population biomass (g wet wt m -2 and kJ m -2 ) decreased significantly with increasing depth. Individuals from shallow (10 to 20 m) habitats were in superior nutritional condition to those from deeper water (30 and 165 m), as shown by higher gonad and pyloric cecum indexes, and by higher lipid and energetic levels in the pyloric ceca. Moreover, gonadal output (reproductive output) was higher in shallow-water individuals. Higher levels of chlorophyll in the pyloric ceca and richer yellow to red coloration of the body wall in the shallow-water individuals indicate that they utilize the higher levels of primary production at shallow depths. At East Cape Armitage, where nearly permanent, thick, snow-covered ice most of the year resulted in very low levels of benthic primary production, the lowdensity sea stars were all very small and nutritionally similar to the deep-water individuals at McMurdo Station. At Cape Evans, where the generally snow-free sea-ice that broke up in mid-summer resulted in a luxurient benthic cover of diatoms and macroalgae, the sea stars were smaller than at McMurdo Station at comparable depths, but population densities were higher, resulting in 4 to 9 times greater biomass. Growth rates of sea stars fed in the laboratory were very low, especially compared to laboratory-reared temperate and tropical species; well-fed individuals need about 9 yr to reach 30 g wet weight, near the mean size of shallowwater individuals at McMurdo Station. No growth was detected in individuals caged at McMurdo Station for one year, suggesting even lower growth rates in the field. The stable size-frequency distributions at the different sites and depths throughout the year-long study suggest highly stable populations with low temporal variability in recruitment, migration and mortality. These data indicate that individuals and populations of O. validus quantitatively and qualitatively reflect the general level of productivity of a habitat. Differences noted in size, coloration, nutrition, and reproductive effort may be the result of long-term integration of local levels of primary production. These ubiquitous sea stars may serve as a biotic indicator of productivity in localized habitats around the continental shelf of Antarctica.

Journal

Marine BiologySpringer Journals

Published: Sep 1, 1988

There are no references for this article.