Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Indentation creep of the wrought AZ31 magnesium alloy

Indentation creep of the wrought AZ31 magnesium alloy Creep behavior of a wrought Mg–3Al–1Zn (AZ31) alloy was investigated by long-term Vickers indentation testing under constant loads of 5 and 10 N and at temperatures in the range 423–523 K. Based on the steady-state power-law creep relationship, the stress exponents were determined. The creep behavior can be divided into two stress regimes with different stress exponents and activation energy values. The low-stress regime activation energy of 96.2 kJ mol−1, which can be interpreted as that for the activation energy for Al diffusion in Mg, and stress exponents of about 3.0–3.4 suggest that the operative creep mechanism is dislocation viscous glide governed by the diffusion of aluminum atoms in magnesium. This behavior is in contrast to the high-stress regime, in which the average values of n = 6 and Q = 132.4 kJ mol−1 imply that dislocation climb-controlled creep is the dominant deformation mechanism. Stress exponents and activation energies obtained by different analysis methods of the indentation tests are in good agreement with each other and with those of the conventional tensile creep tests on AZ31 magnesium alloy reported in the literature. The localized indentation creep tests are, thus, considered capable of acquiring reliable information on the creep behavior of wrought magnesium alloys. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Indentation creep of the wrought AZ31 magnesium alloy

Loading next page...
 
/lp/springer-journals/indentation-creep-of-the-wrought-az31-magnesium-alloy-zLWylkVqoh

References (32)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
DOI
10.1007/s10853-012-6664-z
Publisher site
See Article on Publisher Site

Abstract

Creep behavior of a wrought Mg–3Al–1Zn (AZ31) alloy was investigated by long-term Vickers indentation testing under constant loads of 5 and 10 N and at temperatures in the range 423–523 K. Based on the steady-state power-law creep relationship, the stress exponents were determined. The creep behavior can be divided into two stress regimes with different stress exponents and activation energy values. The low-stress regime activation energy of 96.2 kJ mol−1, which can be interpreted as that for the activation energy for Al diffusion in Mg, and stress exponents of about 3.0–3.4 suggest that the operative creep mechanism is dislocation viscous glide governed by the diffusion of aluminum atoms in magnesium. This behavior is in contrast to the high-stress regime, in which the average values of n = 6 and Q = 132.4 kJ mol−1 imply that dislocation climb-controlled creep is the dominant deformation mechanism. Stress exponents and activation energies obtained by different analysis methods of the indentation tests are in good agreement with each other and with those of the conventional tensile creep tests on AZ31 magnesium alloy reported in the literature. The localized indentation creep tests are, thus, considered capable of acquiring reliable information on the creep behavior of wrought magnesium alloys.

Journal

Journal of Materials ScienceSpringer Journals

Published: Jun 26, 2012

There are no references for this article.